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Developing high-order non-dissipative schemes is an important research task for
both steady and unsteady flow computations. We take as a starting point the “built-in”
de-aliasing property of the discretized skew-symmetric form for the non-linear terms
ofthe Navier—Stokes equations, recalled in Kravchenko and Moin [1]. Two families of
high-order locally conservative schemes matching this discretized skew-symmetric
form are considered and rewritten in terms of telescopic fluxes for both finite dif-
ference and finite volume approximations in the context of compressible flows. The
Jameson’s scheme [2] is shown to be the second-order member of larger families of
“skew-symmetric-like” centered schemes. The fourth-order finite volume and finite
difference and the sixth-order finite difference schemes which belong to this fam-
ily are provided. The proposed schemes are extended to shock capturing schemes,
either by modifying the Jameson’s artificial viscosity or by hybriding the centered
flux with Weno [3] fluxes. An adapted interpolation is proposed to extend the use of
the proposed schemes to non-regular grids. Several tests are provided, showing that
the conjectured order is properly recovered, even with irregular meshes and that the
shock capturing properties allow us to improve the second-order results for standard
test cases. The improvement due to fourth-order is then confirmed for the estimation
of the growth of two- (TS waves) and three- (Crow instability) dimensional unsta-
ble modes for both confined and free-shear flows. The last application concerns the
steady computation using the Spalart—Allmaras model of a separated boundary layer:
it confirms that the use of a high-order scheme improves the results, even in this type
of steady applications. © 2000 Academic Press
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1. INTRODUCTION

Simulations of unsteady compressible flows are rapidly developing for applications st
as acoustics, multi-physics flow, and in a generic way, LES/VLES (large-eddy simulatio
very large-eddy simulations). These studies are no longer reserved to the research
munity but start a breakthrough in industrial-type applications. An important part of the
studies concerns the development of high-order numerical schemes. For exampd¢aBhur
make use of a fourth-order centered and a fifth-order upwind scheme to perform detac
eddy simulations [4] for both isotropic turbulence as well as for flows around an airfoil
high lift angle.

Although some LES are performed using second-order numerical schemes [5, 6],
general idea is that LES require higher-order schemes, especially for the convective
of the Navier—Stokes equations. The numerical errors can be considered as the su
truncation and aliasing errors as presented in Lilly [7] and in Kravchenko and Moin [
This means that the notion of order is not sufficient to characterize a numerical scheme:
has also to consider properties such as conservation, dispersion, diffusion, or dissipatic
directly transported quantities and of their possible quadratic invariants (kinetic energy,
example).

e The description of the convective terms&:or compressible applications, weakly dis-
sipative schemes are often used, even for LES applications. Indeed, one has to face
difficulties, which makes the built-in diffusion of some schemes attractive. First, most coc
devoted to compressible applications are written using collocated variables. This prev
the users from benefitting from the stabilizing properties of staggered meshes. Second, «
pressible applications such as internal aerodynamics sometimes generate spurious ac
waves, that may be damped by any built-in numerical diffusion.

However, as many modeling procedures are based on the Boussinesq approximatior
on the use of an eddy viscosity ((V)-LES, U-RaNS, RaNS except second-order modelil
the use of weakly dissipative schemes is seen as a requirement to reduce spurious numn
modeling interactions. This renders the use of centered schemes still attractive, bec
they do not exhibit any spurious diffusion or dissipation (when considered independer
of the temporal scheme used to integrate the equation).

A far as the convective part of the compressible Navier—Stokes equations is concer
the mentioned properties of conservation, dispersion, and dissipation strongly depen
the nature of the scheme (centered or upwind-biased) and on the form used for the
cretization of the non-linear terms. This can be illustrated by considering the non-lin
one-dimensional scalar equation
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and skew-symmetric forms
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are equivalent atthe continuous level, these discretized forms do not have the same prop
of conservation and stability. It is commonly admitted that kinetic energy conservation
a key feature for the stability of unsteady computations. This property is ensured in
incompressible limit by the skew-symmetric form (Eq. (4)) for centered schemes (see [1,
among many).

Conservation of quadratic quantities (such as kinetic energy) is presented as a re
ing property of aliasing errors minimization in [7, 1]: Fourier analysis of forms (1) t
(4) shows that it is the skew-symmetric form that minimizes aliasing errors. Conservati
and de-aliasing properties of schemes have been extensively studied in the mid-196C
the geophysical community and proper solutions have been proposed: the former wor
Arakawa [9] has been extended by Lilly [7] to the primitive equations of motion, incluc
ing eventually compressibility (see [7, Eq. 2.10]). Lilly derived a systematic way to g
the quadratic-conserving representation of the transported quantities up to second o
As mentioned by a referee, the use of a skew-symmetric form for compressible flow
introduced in Feiereisest al.[10].

e Local conservation and finite volume formulatiorA property of importance for the
numerical scheme is local conservation of transported quantities, which is the numer
translation of the conservation laws over a fixed finite voluinef fluid, and reads, for the
previous one-dimensional equation,

3 [, ude
f9+/ F.dS=0, (5)

whereF is the flux at the surfac&(Q2), oriented with the unit normal vectaS. Let us
consider the celi, located at positiorx;, of interfaces located at 1> andx_1,> (see
Fig. 1). For Eqg. (1), the discretized counterpart of Eq. (5) is written

3 [, Ude
'T + Fit12S+412 — Fi—1/2S-12 =0, (6)
A; A; Aj Aj
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FIG. 1. Principle of interpolation for finite volume scheme on an irregular one-dimensional grid. An optim:
fictitious regular grid is defined. The corresponding cells dimension is denot&fl. Ahe interface + 1/2 where
the flux is evaluated remains at the same location.
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Fi+1/2S+1/2 being the flux through the interface located at1/2 (F =UV). Equation
(6) ensures that any fluk 1,25 +1/2 leaving the cell goes into cell + 1. This obviously
ensures exact conservationbfand is known as the telescopic property introduced by La
and Wendroff [11]. This property is of first importance for finite volume formulation an
for compressible problems.

As shown by Eq. (4), typical skew-symmetric schemes are not written in a locally cc
servative form, which is not an issue in a finite difference (FD) context for incompressit
flows but can be more questionable when used for compressible applications and is inc
patible with the finite volume (FV) formulation. Recently, Morinigtial. [8, 12] derived
conservative second- and fourth-order schemes for LES of incompressible flows, incluc
non-uniform grid arrangement studies. A recent solution to get high-order conserva
skew-symmetric schemes was also derived by Veldman and Verstappen [13] for stagg
meshes: this work emphasizes the conservative properties of the skew-symmetric form
proposes an original way to take varying meshes into account. However, its applica
to full Navier—Stokes equations requires the definition of two control volumes, one bei
three times larger than the standard control volume [14]. So, the issue of locally conserve
schemes matching the skew-symmetric form and compatible with Eq. (6) is still an of
question.

e The search for finite volume/finite difference conservative schemes with skew-symm
properties for compressible flowsThe present work is motivated by the search for high:
order non-dissipative but numerically stable conservative schemes to perform unsteady
culations of compressible flows oriented towards LES and/or VLES. It is mainly inspir

by

o the interest of the built-in de-aliasing property of the skew-symmetric form of cel
tered schemes,

o the necessity of developing an implicit time marching method for unsteady calc
lations in complex geometry, which leads in practice to consider separate time and sy
integration.

This leads us to consider the following points:

e Whatever the interest of conservation of some quadratic quantities (such as kin
energy) that comes along with the use of the skew-symmetric form of the convective te
in the context of incompressible flow (see [1]), the use of such schemes for comp
sible flows is, for us, first motivated by the benefit obtained from the built-in de-aliasi
property mentioned before. For the compressible equations considered here, kinetic
ergy is in balance with acoustic energy and we will not develop any discussion conce
ing its conservation: the interested reader is asked to refer to the existing literature.
the following, the conservative properties of the scheme will refer to the conservation
transported quantities, which will be guaranteed by the use of the flux-based formulat
(Eq. (6)).

e The skew-symmetric form has already been used in conjunction with many differe
methods: spectral schemes [15], Badhemes [16, 17], and more basically centered diffe
ence schemes (the last reference in that context is [12]). However, the use of such a forn
finite volume context, i.e., in a formulation based on Eq. (6), has, to the author’s knowled
never been exposed. The determination of such fluxes is the key issue of the paper. In ¢
to be complete, the text will provide fluxes that when used will bring standard diverger
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or skew symmetric forms (see the precise definition below) for both finite difference a
finite volume contexts.

This limitation of the work will have the following consequences:

e Because we solve compressible Navier—Stokes equations, the conservative varic
are chosen and the pressirds explicitly solved. So, contrary to what has been done ir
[12] and other work, we do not take special care for the continuity equaigiat +
dpu;j /9% = 0; the resolution is performed using the proposed fluxes, either in divergen
or in skew-symmetric form.

¢ We will not follow the same discrimination between the divergence and the ske
symmetric forms as Morinishét al. [12]. We will call the divergence (respectively skew-
symmetric) form of orden any discretization of Eq. (1) that will match the discretization of
Eq. (2) (resp. Eq. (4)sing the nth order central differencing schemieis classification lays
emphasis on the aliasing error reduction coming from the skew-symmetric form (see[6, 1
Moreover, our definition asserts the fact that the skew-symmetric and the divergence fo
match in the compressible context at a discretized level only if the convection equatiol
a linear one. The direct consequence is that the relations provided in Moghiah[12]
are incompatible with the present definition.

As introduced in [19], the starting point of the proposed family of fluxes is the origin:
scheme developed by Jamesdral. [2] and the fact that it is equivalent to a second-ordel
skew-symmetric scheme (see below and [6, 18]).

We propose high-order (second, fourth, and sixth) centered skew-symmetric FD sche
and high-order (second, fourth) centered skew-symmetric-like FV schemes. All these s«
mes are developed for collocated variables and match the telescopic conservative prope
Eq. (6). Asthey are centered, they do not present any diffusion for the transported quanti
at least for one-dimensional problems and non-diffusive time integration.

The paper is organized as follows. First, the formulations of the fluxes involved in F
or FV discretization of the Euler equations are recalled (Subsection 2.1). To concentrats
conservation properties, both FD and FV discretizations are rewritten as flux divergen
(Eq. (6)). TheseconderderJamesorscheme (SOJS) is then presented, including the formu
lation of the fourth- and second-order artificial dissipations (Subsection 2.2). The constra
on the searched schemes (centered, skew-symmetric-like, controlled order) are formul
in a mathematical way, which leads to a linear system, for which the SOJS is the o
solution corresponding to the second-order scheme (Section 3). The particular solut
concerning the fourth-order are then proposed (Section 3). An extension of the sche
to varying meshes (Section 5) and an adaptation of the centered flux to shock-captu
schemes using either modified second-order artificial viscosity or hybridazation with a fif
order Weno scheme (Section 4) are finally proposed. The schemes are implemented |
industrial solver (Section 6). The results concerning one-, two-, and three-dimensional
cases are then proposed and prove the good behavior of the numerical method (Secti
and 8). The complete Taylor expansion showing the order of the schemes is provided i
appendix, together with the sixth-order scheme of the proposed family. All schemes ¢
sented here are derived for structured data. In the following, the conservative property
is verified by the presented schemes concerns the transported quantities. The consen
of the kinetic energy is ensured through the skew-symmetric form in the incompressi
limit (see [1]).
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2. CONSERVATIVE SCHEMES

2.1. Generalities on conservative schemdor all following developments, variables
are collocated and cell-centered: they stand alternatively for the local (fotJFD,=
U (x,j k) or for the mean value off over the cell (for FV,Oi,j,kz %fvmi‘k) U (x) dx,
V(xi,j ) is the volume of the cell located &t ; « in the physical space and designed by
the coordinates, j, k in a structured code). L& 1> j « be the surface of the interface
between cells, j, kandi + 1, j, k. Let us consider the local Euler equations, involving the
fluxesF" in thenth direction,

% +div(F") =0, (7
with
pu”
ouul 4 pény 3 ]
W = (p. put, pu?, pU%, pe)",  F"(W) = [ pu"u2+ pép [, div(FH) =D 2; .
ou"ud 4+ pdnz n=1 7"
u"(pe+ p)
(8)

u" is the local velocity in theath direction. For simplicity, only semi-discrete schemes an
one-dimensional conservation equations will be considered. We restrict our search to loc
conservative schemes. Such schemes can therefore be written in a form that matche
Lax and Wendroff telescopic property. Then, the discretization of Eq. (8) in the directiol
using either a cell-centered FD or FV technique can be expressed as

oW FiErDl/z - Fi'iDl/z FD
— e gD, 9
at + A : ©)
W
Vi aitl + I:i'iuvl/zsiJrl/z - l:iF—Vl/z‘S‘i—l/Z - 5iFV =0. (10)

&MY and&FP stand for the truncation error of the methdéd , andFfY, , are the numer-
ical fluxes atthe interface between céléndi + 1. As far as FD and FV approaches are con:
cerned, one may distinguish between:

e High-order FD schemes, where a high-order approximation of the deri\(:%ﬁve
at pointi is looked for. The evaluation of the order directly comes from the Taylor expansi
of the considered derivatives at poiritivolved in the local form of Eq. (7).

e High-order FV schemes, where a high-order approximation of the Flat the
interface is looked for. The evaluation of the order directly comes from the Taylor expans
of the flux at the considered interfaice- 1/2. As detailed below, only the direction splitting
method for FV will be considered here (cf. Section 3). A real multi-dimensional FV scher
will not be built here. However, the improvement due to an “high-order directionally sp
FV scheme” will be shown for many applications.

Formally, Egs. (9) and (10) reduce to the same form when the mesh is regjutain?,
Si—12=38i+12=38, andV/S = A, except that FD formulations deal with local values
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of the fieldsU;, whereas FV formulations deal with averaged valUgsFinding proper
expressions of the flux F+Dl/2(W) and Fii"l/z(W) is the motivation of the present paper.

2.2. Second-order Jameson scheme (SOJS)t the SOJS and for both FV and FD
contexts (see below, Eq. (17)), the numerical Xy, is approximated by

Firyz = F(Wiy12) — disay2, (11)

whered; 11,2 is a combination of second- and fourth-order artificial dissipation [2], with

diy1/2 = 05110 + %112 (12)
2
dgzz,i+1/2 = Ei(+)1/2(VVi +1— W), (13)
dgg,i-kl/z = _Ei(i)l/Z(\Ni 2 — Wi+ 3W — Wi_y), (14)
and
éi(i)l/z = k@ Ri112¥i1172, (15)
€12 = max(0.0, KYRi 112 — €2 ). (16)

k@ andk® are real numbers fixing the amount of diffusion brought up by the secon
and fourth-order dissipative operatal¥ andd?; (the superscripte2 or o4 are related to
the order of the diffusion operator used for the dissipation; the subsiZifs related to
the order of the scheme on which it applieR)..1/> is the spectral radius of the jacobian
matrix dF /oW at the cell faca + 1/2. The aim of the fourth-order artificial dissipation
is to control (by preventing them) spurious oscillations. When the second-order artific
dissipation is switched on, the global scheme is close to an hybridization between cent
and upwind schemes and is able to capture the shdgks;, is a sensor based on pressure
fluctuations (see Jameson [2, 20, 21]).

A Taylor expansion of\} in the cell centered arounidshows that

A A% [ 3?W
W W= (— . 17
' ' 24<ax2>i (7

This explains that the confusion between the FD and FV approximations can be made
to second order. We now expose two possible formulation§ for Eq. (11), one of them
constituting the original Jameson scheme (see below).

2.3. A family of centered schemesJp to Section 4k®, k@ of Egs. (15) and (16)
are set to zero. The role played by the non-linearities and their different formulatio
(Egs. (2)—(4)) in the complete compressible Navier—Stokes equations can be studied
on the one-dimensional scalar Eq. (1).

At first sight, all forms (Egs. (2)—(4)) are meaningful in the FD context, but only th
divergence form (Eg. (2)) can be used in the FV context. However, it is easy to ident
in the existing literature the fluxef§ 1> that, when plugged into the discrete divergence
conservative form 9 or 10, will lead either to the second-order discretized divergence fc
(Eq. (2)) or to the second-order discretized skew-symmetric form (Eq. (4)).
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Let us consider the developed expression of the second-order discretized divergence

aU; n UiyVigr —UisaVice gy

ot 2AX 02

(18)

and of the second-order discretized skew-symmetric form

Ui 1/UipViga—UisVieg 1 /Vigi—Via 1., /Ui —-U skew
= U ———— “Vi|——— ) = &5
at 2( 2AX >+ > '( oax ) T2 T 2ax 02
(19)
It is easy to show that Eq. (18) is obtained when plugging

Firyz = (UiVi +UipaViin)/2 = Fglya (20)

in Eq. (9) or (10); whereas Eq. (19) is obtained when plugging

Ui + U, Vi +V

Fi+l/2 _ F(Ui+1/2) _ ( i 5 |+1)( i 5 |+l) _ ngk,?\ivl/z (21)

in EQ. (9) or (10) (see previous studies [6, 18, 19]). Please notice that the fluxes are wri
together with the mention of the discretization they produce (skew or div in superscript);
order is made precise by the subscrig2 fiere). Equation (19) corresponds to the schem
given by Eq. (66) of Morinishet al.[12]; it also corresponds to the SOJS.

ReplacingU by U in Egs. (18)—(21) leads to the same formal developments (see t
Appendix). In conclusion, the Jameson scheme is a second-order conservative FD scl
in skew-symmetric form, or a second-order conservative FV scheme, where the flux di
gence (as definedin Eq. (10)) is formally as close as possible to the standard skew-symrr
discretization (and is therefore denoted by “skew-symmetric-like”). For the present de\
opments and since Eq. (17) holds, the corresponding FV form is identical to the FD o
there is no need to specify the FV or FD context here and the differences between
two schemes stands only at the concept level. This is no longer the case for higher-o
schemes.

3. HIGH-ORDER EXTENSION ON REGULAR GRIDS

We now investigate the possibilities of constructing similar fluxesfbrorder centered
schemesr( being an even number). For this, we introduce the more general non-linear f
that can lead to such schemes, first in the FD contexp @re integers),

FD
Fonit12 = Z Br. pUi+pVitk- (22)
k, pe{i—n/2+1,i+n/2}

The By p are scalars depending only on the order of the scheme and on the local met
Notice that this procedure is similar to the one used by Lilly [7].

With k= p, we will seek for divergence schemes, whereas skew-symmetric schen
should be found with two different indices. In a very similar manner we writeC2e)
approximation of the derivative of the scalarat celli as

(%—g)l = % > Ui (23)

le{i—n/2.i+n/2}



122 DUCROS ET AL.

y is directly obtained using standard Taylor expansions. In order to get consistent scher
the coefficients should obey the following constraintg: =0 and}_, , Bk =1. Cen-
tered schemes are obtained fpe= y_, yo = 0. The schemes we are looking for are deter-
mined by thegy p, solutions of

Hv= S Ui+IAVi+I _ > Bex (Ui Vigk — Zifl+k\/i—l+k) (24)
le{i—n/2,i+n/2} kefi—n/2+1i4+n/2}

for a scheme in divergence form (search Rj’(ﬁ"’;i?/z) and of

Hoew=> > <MUi+IVi+I+Ui(mAvi+|)+vi<mUi+1>)
lefi—n/2ii+n/2}
UispVisk — Uis14pViz
= Z ,Bk,p( i+p Vi+k A| 1+pVi—14k) 25)

k, pe{i—n/2+1,i+n/2}
for a scheme in skew-symmetric form (searchﬁéf?"ﬁ?z). For a given orden, the solution
of Eq. (24) isunique; whereas Eq. (25) leads to a over-determined system of linear equati
The general solution of Eq. (25) for an arbitrary ordewas not looked for. We provide
hereafter a solution fan = 4; a solution fom =6 is proposed in the Appendix.
The problem in the FV context is formulated nearly in the same manner. We introdt
the flux

VF a3 v
Fonit+1/2 = > BipUispVisk (26)
k, pe{i—n/2+1,i+n/2}

and, as suggested in the previous section, we look for the FV scheme, which present:
flux divergence as close as possible to the FD skew-symmetric or divergence form of s
order: the corresponding fluxes will be superscripgkew, F\Vor div, FVin the following.

Let us consider regular grids in this section. For sake of clarity, the proofs concerni
the order of the different schemes are reported in the Appendix.

3.1. Divergence form. It corresponds t& = p and leads to

; 1
Fori, = To("Ui2Visa + TUiaVisr + 7U M = UiaVia), (27)
) 1 R R R R A R R
Foaiio = 750~ UisaVive + W0iaVina + 70 Vi = UinaVio)
1/71 - - ~A o~ 1 - ~ A N
+3 E(Ui+1vi+1+uivi)—Z(Ui+1+Ui)(Vi+1+Vi) . (28)

which provides conservative centered fourth-order schemes for the FD and FV conte
respectively. We recall that the cancellation of aliasing errors directly comes from the ske
symmetric form and holds for all similar expressions, whether this expression involves lo
(FD context) or averaged (FV context) values. There is thus no built-in de-aliasing in flu
27 and 28. That is why we look for skew-symmetric and “skew-symmetric-like” forms.
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3.2. Skew-symmetric and skew-symmetric-like forrrsthe FV context, a real high-
order schemén > 2) is difficult to derive for a multi-dimensional context, just because
the estimation of the flux at an interface as derived for the one-dimensional case is
enough. One should take into account the variation of the flux along the interface in ot
directions than the direction normal to the interface. Some solutions based on real m
dimensional schemes have been proposed that lead to very expensive schemes. Undel
circumstances, it appears to us that deriving a fourth-order FV scheme in a one-dimensi
manner can be of interest, because of its analogy with the FD context described before

A solution of Eq. (25) is

Fosit1/2 = %(ui +Uip) (Vi + Visg) — 2—14(ui_1vi_1 +UimaVigs + UiV + UiV
+UipaVigr +UiVics + UiV + Ui Vo). (29)
The finite volume counterpart expression reads
FSX?YX';YZ = %(Oi + Ui (Vi + Vi) — 2*14(0i—1\7i—1 +Ui1Vig 4+ UiV
+UiVis2+UiaViga + UiaVica + UigeVi + Ui2Vise)
+ % (;(Oi+l\7i+l +UiVi) - %(Owl +UD(Vig1+ \7i)>~ (30)

Equations (29) and (30) provide the fourth-order schemes for the FD and FV conte
respectively. The flux 30 can be seen as the closer counterpart in the FV context of
skew-symmetric FD scheme provided by Eq. (29). Notice that Eq. (29), together w
Eqg. (9), corresponds to Eq. (72) of Morinigdtial.

Remark 1. Applying standard (non-compact) centered derivatives in the FD appro»
mation of the skew-symmetric form Eq. (4) defines the same scheme as the one give
Egs. (9) and (29) (Eq. (72) of Moriniskt al). So, despite its formulation involving a
non-conservative term suchdsdV; /9x + V; aU; /X, the resulting scheme is conservative
and matches the telescopic property.

4. SHOCK CAPTURING SCHEMES

Some applications involving strong discontinuities may also require the use of a low-le
dissipative scheme in other parts of the flow. This is the case for turbulent flow developing
gether with interface corrugations (Rayleigh—Taylor and Richtmyer—Meshkov instabilitie
shock-turbulence interaction). This is also the case for stationary and unsteady aerody:
ics applications (flow around an aircraft in transonic cruise conditions, for example).

For both situations the use of the previous scheme may be suggested, provided s
procedure to cope with discontinuities may be found. We hereafter present two way:
construct such a scheme:

e The first one consists of the use of artificial viscosity, as done for the SOJS (¢
Egs. (11)—(16), together witk{? > 0). To understand how this dissipation works, the one
dimensional linear scalar equation

oU U

—+a—=0 a>0 31
ot Tk T ~ (31)
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is often considered [22]. The use of the SOJS applied to this equation leads to a sec
order centered scheme, except in the region where the second-order dissifatiots.
Assuming that the expressieff (see Eq. (13)) takes locally the valag2, then the flux
globally reads

F(Uit12) — dgg; 110 = Ui, (32)

Fit12 — Fica2 — (051110 — 951 1/2) = aUi — Ui ). (33)

The scheme is locally switched from centered second order to upwind first order. T
property (the “upwind connection” in Swanson and Turkel [22]) is advocated to expla
the “good” behavior of the Jameson scheme applied to equivalent non-linear systems
Let us calld?? the artificial viscosity that would be added to the fourth-order flux to get a
upwind like scheme. The first choice is of course

doy = dg3. (34)

for which the global fluxFos i +1/2 — dgii+l/2 is not able to switch to a true upwind scheme,
whatever the value®. A better adapted artificial viscosite? can be built so that the
expressionFos i +1/2 — dg’ii+l/2 may recover the same upwind scheme as in Eq. (33) fc
€@ =a/2:

2¢?
di12 = I:|_+21/2(—Ui+2 + 7Uiy1 — 5Ui — Ui—p). (35)

Notice that, as the main objective of this artificial viscosity is to make the scheme swit
from a central to first-order upwind scheme, no special care is required to distingu
between FD or FV schemes here.

e The other solution consists in an hybridization between the centered scheme an
upwind one in regions where discontinuities occur. The corresponding flux reads as

Firy2 = Pit12Fosai+12 + (1 — Pity/2) Fupwing (36)

In order to preserve high-orddf,,wingmay be the flux given by a fifth-order Weno scheme
[3]: this gives the C4W5-hybridization scheme. Tleightedessentiallynon-oscillatory
(Weno) scheme consists of building a high-order ENO reconstruction procedure toge
with a Riemann solver (Roe solver in practice here)is a sensor that detects the steep
gradient regionsp = W is the first choice [6]. In this context and as the Weno formulatior
relies on high-order schemes, a special care concerning the context of FD or FV shouls
taken to build a consistent scheme.

These two methods are to be used in different conditions. The second one is of col
more accurate and is recommended for unsteady simulations, although it is more expen
However, the former, even ifitis cruder, is cheaper and allows better convergence prope
for steady simulations. Indeed, such a hybridization can make the scheme switch from
form to another one for some cells, preventing the corresponding local residual from go
to zero, even with an efficient Newton method.
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5. NON-UNIFORM GRID SYSTEM

The global order of a given method goes down for any varying meshes if the me
variations are not taken into account. Recent works [13] propose to account for the mef
in a “weak way,” preferring to conserve stability properties of the scheme forglobdl
discretization,” rather than ensuring a constant and kndacet discretization error”: this
leads to a reduced order (up to first-order) but stable scheme (see Veldman and co-wo
[13, 23]). As pointed out in Morinishét al. [12], one must make a choice between strict
conservation and maintaining accuracy.

In a first attempt, we try to stick to standard approaches and to maintain the local or
of the scheme when using varying meshes. As clearly exposed below, this will leac
fourth-order schemes, able to ensure the local conservation of the transported quantitie
unable to ensure kinetic energy conservation, which is consistent with the global apprc
developed here. The main difficulty in extending the present scheme to non-uniform g
relies on the fact that non-local products arise in the formulations of the fluxes. The probl
formulated in Egs. (24) and (25) and in their counterparts for the FV context can be ref
mulated in order to take into account the mesh variatigra(d gy , are functions of the
node positions;, X; 1, etc.). However, if we can find a solution for the divergence form, n
solution can be found for the skew-symmetric form. A direct derivation of the metric bas
on a standard Taylor expansion is thus not possible. It is the reason why we only retain
two following ways to take the metrics into account.

5.1. Finite difference context.A practical way to deal with the non-uniform grid is
to consider a derivable mapping between the real ¢idy, z) and a regular mapping
EX,Y,2,n(X,Y,2),d(X,Y, 2). Then, the standard method relies on the developme
based on Jacobian matrices,

9F 9F0& 9F on  0F 0¢ @a7)
X dEIX  In aX ¢ X’

which ensures the global order of the derivatives to be conserved, provided the orde
all derivations is homogeneous. In practice it is recommended to use the same schem
all derivatives [13, 24]. But we did not manage to find any conservative approximation
Eq. (37).

Remark 2. The “conservativity” of the scheme can be maintained for a flux of th
form Fep i +1/2Gi+1/2, Gi+1/2 being an estimation qf%)i. However, such an estimation is
possible only up to first order, which makes the global order of the scheme decrease.
property of conservativity of the standard skew-symmetric schemes derived using cent
derivatives discussed in Remark 1 is thus limited to the regular grid.

5.2. Finite volume context.We now present the generalization of this scheme in a
irregular Cartesian context. The method presented here directly applies to any FV cent
scheme and was inspired by Shu [3]. Of course for 2 or 3 dimensions, the global order of
scheme will fall to second order, for the reason coming from Eq. (17). We recall that frc
a practical point of view, FV schemes based on one-dimensional stencils provide obvi
improvements compared to lower-order schemes.

Because we have a high-order scheme on regular meshes, the idea simply lies ir
possibility to use this scheme on a fictitious regular grid. We present here a methoc
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realize this idea in a simple way. At each interfa@e%, we associate a fictitious regular
grid, whose spacing;* is chosen to be the optimal spacing (according to a certain criteric
made precise below) over the stencil used for the calculation of the flux. Since we will L
an interpolation polynomial, the fictitious grid is proposed to be the largest that can be us
As shown in Fig. 1, the grid spacing; is then defined by

2A7 = min(Aj_1 + A, Aip1+ Ajso). (38)

We focus on high-order approximation of the flux at the interﬁae;e%. Given the mean
valuesU ji-Jefi—1,i,i4+1,i 42} on the irregular mesh, we can obtain high-order ap.
proximation of the mean valu&g*, Jef{i —1,i,i +1,i + 2} onthe optimal fictitious grid.
The method to recover these mean values is as follows: we first define the primitive o
over the considered stencil

Vx) =/ U ) de.

The knowledge of the mean values on the irregular grid is equivalent to the knowledge
the primitive at interfaces since

V(%:3) =/X”7 U &) d

j
=Y UAw. jeli-2i-1ii+1i+2).
k=i—2

We now define the Lagrange polynomia{x) which interpolates the primitiv®y/ at the
locations of the interfaces,

i+2 i+2 X — X

P = 3 Vi)

j=i—2 k=1-2,k#] Xt 1 i+3
This polynomial provides the following approximation in case of a regular mesh,
5
PX)=VX) +O(A%) VX E [Xi_pp1, Xiyp41]-

In case of an irregular mesh, the order of approximation is linked to the derivative
order 5 ofV, and to the distribution of the grid points. Nevertheless, we assume tt
for reasonable grid stretching rates, this approximation remains suitable, and we de
A= max(Aj)jeji-1ii+1i+2). The coordinates of the fictitious grid are defined such tha
the interface + % under concern has not moved,

X 1= X1+ kAT, ke{-2-1,01, 2}.

i*+k+§
The pointwise values dP at these locations yield
Xi*+k+l
P(Xi*+k+%) = / 2U (&) dE + O(A®).
X241

Consequently the fictitious mean values can be approximated at high order in the follow
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way,

T % 1 * * 4 . . .

Us = A7[P(xj+%) —P(X_ )] +0@h,  jeli-1i+2)
Note that the subscript ot is i, no more depending on the locatigrsince the fictitious
grid is regular. The order of approximation finally obtained (4) is consistent with the orc
of the proposed scheme (4). The complete formula is

1 i+2 x*

i+2 j i+2 * Y. —X.
s L 3 XJ'+% Xj+3 j-1+3 Xj+l
Ui~ = > > Ua| I —F— Il
i j=i—2k=i-2 kei—2 k] “k+3 T Ni+3 kmioksj CkF3 T Ti+3

which explicitly gives the fictitious mean values from the real mean values and the lo
metric of the mesh. Once this reconstruction is done, the original numerical FV flux can
simply applied to the reconstructed mean values in order to evaluate the flux at interf
i+1/2.

As stressed before, the resulting schemes conserve the transported quantities, and tt
of the proposed interpolation has two consequences:

e First, it can act as a smoothing that could be able to dissipate kinetic energy. C
may draw some parallel between the present interpolation and the standard parabolic i
polation appearing in the piecewise parabolic method (see Collela and Woodward [25]

e Second, it interferes with the strictly skew-symmetric form, and therefore results
an increase of aliasing errors.

6. IMPLEMENTATION

The previous schemes are now called SOJS for the second-order Jameson sct
COSSYL-FV4 (respectively, -FD4) for the fourth-order conservative skew-symmetric F
(respectively FD) like schemes. All have been implemented in a vectorial/parallel versior
the FV structured multi-block solver NSMB developed in an academic/industrial type cc
sortium gathering Afospatiale, Saab, CERFACS, KTH, and EPFL [26]. This code solve
the complete compressible Navier—Stokes Egs. (7) and (8), together with LES and R
modelings. Independent implementation and tests of the sixth-order scheme in a “rese
code” prove that it performs well, even better than the fourth-order scheme for the Carte:
grid. However, if the existing NSMB architecture is well adapted to the stencils involved
the fourth-order schemes, it is not the case for the larger stencils involved in the sixth or
which is no longer considered in the present paper.

As stressed by the rewriting of the FD scheme in a conservative manner (see Eq. (9)),
can easily switch from a FV to a FD code for Cartesian meshes, which allows the tes
of both types of approaches. As far as time integration is concerned, standard Runge—}
explicit as well as implicit time integrations can be used, since the proposed schemes
on separate time and space discretizations. For explicit Runge—Kutta schemes, the sta
condition adapted for the present schemes is not different from the stability condit
arising for standard centered schemes; the interested reader can find all the details in
For implicit integration, no stability condition arises and we make use of the scheme alre,
available in the solver, namely, a Newton method basddwar-uppersymmetricGauss—
Seidel (LU-SGS) schemes for steady flows, developed by Weber [18, 28].
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TABLE |
Estimation of the CPU Cost of Several Schemes Used for Compressible Application,
Normalized by the Cost of the SOJS

Scheme S0JS COSSYL-FV4 No Met. Weno-Roe
CPU cost 1 1.2 5

Scheme C4W5-hybridization COSSYL-FV4 Fu. Met. Weno-Roe Fu. Met.
CPU cost 1.x-<5 4 15

Note.The present cost concerns the time spent to evaluate the Euler part of Navier—Stokes equations;
No Met. stands for no metric; Fu. Met. for full metric. The cost of the C4W5-hybridization scheme
strongly depends on the test case and on the way to implement the two fluxes.

Table | provides an estimation of the CPU cost of several schemes used for compres:
applications, normalized by the cost of the SOJS. The present cost concerns the time ¢
to evaluate the spatial derivatives (building of the fluxes and divergence estimation) :
concerns only direction splitting schemes: no true multi-dimensional scheme is conside
here. Relating directly the results of the following test cases to the properties of the
posed schemes can be done as follows. The advantage of using an high-order schem
clearly appear in the examples. However, the aliasing reduction due to the use of the sk
symmetric form appears at small scales (see Kravchenko and Moin [1]). This means
the use of the divergence form in most of the presented cases where the skew-symm
form performs well will end in a blow-up of the code. This is due to spurious oscillatior
in the thermodynamic fields: most of this unfavorable behaviour is related with wigg
developments. In consequence, no simulation will be presented using the divergence fi

7. LAMINAR ONE- AND TWO-DIMENSIONAL TEST CASES

The global order of each scheme is proved in the Appendix using formal mathemati
developments. We hereafter provide numerical tests, showing the good behaviour of
proposed schemes.

7.1. One-dimensional test caselhe aim of this section is to compare numerical with
reference solutions in some particularly simple configurations such as acoustic wave
one-dimensional shocks. For this, we consider the evolution of the cumulative error &
function of A(n)

n

em = Ilo—o"

i=1

; (39)

wherep" is the analytical solution of the problem at the considered timaasithe number
of points used for discretization of a domain of fixed length A(n) =Ly/(n — 1).

o Acoustic waveWe first consider the case of a Gaussian acoustic wéxe= pg +
spe~/oHx-L/2? that propagates in a periodic domain of length= 1 for the Euler
equationsg = 0.03, andsp = 0.01. The use of similar test cases to investigate dispersiv
and diffusive properties of schemes is usual; see [29], for example. Obviously, the or
of the scheme is recovered on a regular grid. Moreover, in order to check the order of
proposed COSSYL-FD4 metric and COSSYL-FV4 metric schemes, two fixed stretchir
(5 and 15%) are investigated. The resolution varies between 200 and 1600 points. For «
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mesh, the domain is discretized in five zones: (1) zone 1, the stepl%jzis constant;
(2) zone 2, the step size is locally refined with a fixed stretching over 20 pdintshus
varies fromdx; to dx,; (3) zone 3, the constant step sibe is taken ovet 4 /2; (4) zone 4,
the step size then increases frdm to dx;; (5) zone 5, the step size is constant and equal t
dx;. This allows us to test the effect of mesh stretching on the solution, the ratio between
smaller and the larger cells being kept constant. Figure 2 provig@$or the SOJS and the
COSSYL-FD4 and COSSYL-FV4 schemes after one convection time (the wave is back
its initial location). Despite the stretching and thanks to the skew-symmetric formulatic
the presents results are obtained without artificial dampkg-£ k@ =0). The results
obtained with the fourth-order schemes are always better than the one obtained usin
second-order scheme. Only the consideration of the metric can ensure the expected «
which is quite intuitive.

-3

10 T
107 | 4
10° | .
10° 1
o+——e COSSYL-FD4 no metric
E—1& COSSYL-FD 4 metric
. A—AS0JS
107 £ o—0 COSSYL-FV4 metric E
N
107 :
100 1000
N points
107
107k .
10° | -
10° . .
o——+ COSSYL-FD4 no metric N
G——F COSSYL-FD 4 metric ..
A—ASOJS N
107 |+ COSSYL-FV4 metric s 4
TN .
107 ‘
100 1000
N points

FIG. 2. Error between the analytical and calculated solutions for an acoustic wave, for 5% (top) and 1
(bottom) stretching. “No metric” means that the fourth-order scheme is used without rk@tdek® = 0.
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FIG. 3. Top, comparison between analytical solution and results from simulations using Weno, second-,
fourth-order schemes for the Sod test cage-ad.2L x/U,. Bottom, cumulative errors for simulations of the Sod
test case.

e Sod test caseThe description of this very common test case can be found i
[30]. The top of Fig. 3 gives a comparison between the analytical solution and rest
(att =0.2Lx/Ur) from simulations using Weno (fifth order), SOJS, and COSSYL-FD:-
using bothd%? (Eq. (34)) andl%? (Eq. (35)) artificial dampings. Here, we tune the artificial
viscosity withk® = 0.5 andk® = 0.03 for both second- and fourth-order schemes. Tht
better results are of course obtained with the Weno scheme. The results given by the C4
hybridization and using Weno only are the same for the chosen séndaut strongly
depend on this choice (results not shown here). When comparing SOJS and COSSYL-F
the use of the fourth-order scheme allows a better treatment of the expansion wave
reduces the oscillations near the shock and the contact discontinuity. This fact is more |
nounced when using the adapted artificial damiffgrather than the original®?, which
produces surprisingly good results. All these properties are recovered in Fig. 3 where
plot e(n).
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FIG. 4. Amplification rate of the Tollmien—Schlichting wave.

7.2. Two-dimensional unsteady test case: Tollmien—Schlichting wa€escerning un-
steady flows, the use of high-order non-diffusive numerical schemes is particularly in
esting in the frame of instability development. Bayltsal. [31] compute the growth rate
of waves in spatially developing subsonic and supersonic boundary layers over a flat p
they compared second- and fourth-order Mac Cormack schemes.

We hereafter compute the growth rate of temporally developing Tollmien—Schlichti
waves for a weakly compressible boundary layer (free stream Mach number 0.5) fc
Reynolds number based on the displacement thickiheddRe, = 1000. The initial condi-
tion consists of the 2D laminar compressible boundary layer together with anincompress
white nosie of weak amplitude (16): the dimensions of the domain are (22, 0)The
configuration is supposed to be periodic, which means that the flow leaving the domai
reinjected atthe inlet. The laminar growth of the layer thickness is treated through a class
forcing described in [32]. Based on linear, compressible stability theory it is known th
the length 23; corresponds to an unstable wavelength of Tollmien—Schlichting waves (s
Schlichting [33] for incompressible flow, and Mack [34] for compressible boundary layer:
The expected growth rate ig ~ 1.82U,/6; for our case and has been reported in Fig. 4
This figure shows the growth rate of TS waves for several resolutions. Here, the visc
terms of the Navier—Stokes equations are evaluated through the standard second-orde
tered scheme already implemented in the NSMB solver. The COSSYL-FD4 scheme all
us to follow the development of such waves even for resolutions where the SOJS is not
to ensure the wave amplification. For all simulatioki®, =k® =0.

8. THREE-DIMENSIONAL TEST CASES

In a former study, it was shown that the use of the proposed fourth-order rather tl
second-order schemes improves the results for LES computations of attached turb
boundary layers, at least as turbulent fluctuations are concerned [19], as it is usually repc
[1]. Two test cases are provided hereafter; the first concerns the development of C
instability and is close to DN&@ =k® = 0); the second is close to aerodynamics anc
includes RaNS modeling.
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8.1. Simulation of the long-wavelength Crow instability developing in vortex pair:
Thistest caseis performed using explicittime stepping in a pure Euler context. Itaims ate
uating the gain obtained with the COSSYL-FV4 scheme with respect to the SOJS schen
a typical configuration dominated by convection phenomena. The long-wavelength thr
dimensional instability developing in originally two-dimensional rectilinear vortex pair
has been discovered by Crow [35] and is of major concern in the field of wake vortex. T
dynamics of this instability has been further investigated theoretically by Wignaill.
[36]. The physical mechanism is due to the velocity induced by one vortex on the other,
also to the self-induced velocity of one vortex. The most amplified wavelength scales w
the vortex separation distance (denotedopyThis wavelength, as well as the associatec
growth rate, depends on the ratigh, wherea stands for the vortex core radius. In the
present test case, we use a superposition of two rectilinear Lamb—Oseen vortices witl
axial velocity, such as the initial ratio &b~ 0.2. Periodic boundary conditions are used
in the three directions. The simulation domain is chosen to contain three wavelength:
the Crow instability in its axial dimensiofLx = 18b). Obviously this axial size of domain
has some influence on the simulated most amplified wavelength if the size does not exe
match the natural wavelength. The transverse dimensions are defined such as the v
replica induced by the periodic boundary conditions having a weak influence on the ¢
sidered vortex pair. A good compromise is found tdhe= 5.5b andL , = 4.5b. Three grid
resolutions have been used (see Table Il). The number of points in each dimension is
noted byny, ny, andn,. Time is put to the non-dimensional fortt = t (Urer/ I rer)). We only
focus on the linear regime of the instability development. The simulation on the fine me
with the COSSYL-FV4 is considered as the reference simulation (Fig. 5). The evoluti
of the mode corresponding to Crow instability is identified by performing axial discre
Fourier transforms. Figure 6 shows the evolution of the kinetic energy contained in 1
simulated mode corresponding to the instability mode. The reference solution shows tt
transient period before the kinetic energy corresponding to the Crow mode is exponenti
amplified. On the coarse mesh the SOJS provides a growth rate close to the referenc
to a non-dimensional time* ~ 60. This early departure from the reference curve indicate
that the intrinsic dispersion of the scheme acts strongly on the vortices. Indeed some
tical patches are extracted from the initial vortices and the solution becomes non-physi
On the same coarse mesh, the fourth-order scheme eventually diverges from the refer
curve later (* ~85). The medium mesh allows much more pertinent comparisons wi
the reference solution. In this case both schemes show a good qualitative behaviour.
growth rate simulated by the SOJS is overpredicted &fter135 and exhibits an increase
in deviation, whereas the growth rate simulated by the COSSYL-FV4 corresponds to
reference curve up t = 150, and the deviation observed remains approximately consta

TABLE Il
Mesh Resolutions for Crow Instability Development

Mesh Ny ny n,
Fine 115 92 40
Medium 80 60 30
Coarse 60 41 22

Note. nx ny, nzdescribes the resolution i y, andz directions.
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FIG. 5. Structure of the Crow instability at timt& = 250L ¢t/ Ur. Fine mesh and COSSYL-FV4.
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FIG. 6. Evolution of the kinetic energy in Crow mode development as function of time for different schem

and grid resolutions.
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FIG. 7. Computational set up for the detached laminar boundary layer.

up to late stages. In conclusion, this test case provides a concrete proof of the improver
accomplished by the COSSYL-FV4 for the prediction of three-dimensional unsteady flov

8.2. Steady RaNS computatiorThe pertinence of a high-order scheme for steady RaN
computations is still an open question. However, we compute the solution of the RaNS ec
tions, solved together with the Spalart—Allmaras (S—A) model [37] on the configurati
described in Fig. 7. This corresponds to the simulation of the transition to turbulence c
laminar boundary layer submitted to an adverse pressure gradient caused by a suction ¢
upper wall. The problem here is not to know if the solution is a good one, but to analyze h
the scheme is able to converge towards a grid independent solution. The grid is stretc
near the wall and the resolution is kept constant in the vertical direction for all simulatio
(Ly=10084, 81 being the inlet displacement thicknesg,= 100). The grid is discretized
using a regular step size in the streamwise directign= 3505;, nx varies between 150
to 600). For all simulations, the transport equation of the S—A model is resolved usin
first-order scheme, whereas the time evolution of the other conservative variables is ¢
puted using either the second- or the fourth-order scheme; the second-order artificial
cosity is set to zero, whereas the fourth-order artificial viscosity is set to a standard value
steady simulationk™® = 1/64. Figure 8 shows that a given mesh convergence is achiev
using the most refined mesh for both second- and fourth-order schemes. This resu

04 1
o 02 —
9 /M‘W
* 0.0
5 — — COSSYL-FV4 150 X 100 pts
02 L +——e COSSYL-FV4 200 X 100 pts _
—— COSSYL-FV4 600 x 100 pts
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S o4l u £+ SOJS 300 X 100 pts ]
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-0.8 L L !
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X

FIG. 8. Friction coefficient for steady RaNS simulation of separated boundary layer. Top, COSSYL-F\
results, and bottom, SOJS results; for both figures, the result obtained on the 1609 grid is taken as reference.
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preserved for coarser resolution using the fourth-order scheme whereas the use o
second-order scheme is not able to reach a converged solution for medium resolt
(nx=200): the fourth-order scheme thus allows a large CPU cost reduction (approxima
50%, linked to the 2 time coarser grid), which is compared to the 20% CPU cost incre
of the fourth- versus second-order fluxes computation.

9. CONCLUSION

From atheoretical point of view, we have integrated the second-order Jameson schem
larger family of schemes presenting skew-symmetric or “skew-symmetric-like” propertie
The derivation of these schemes is proposed in three steps:

o First, the fluxes corresponding to a given order are found for a regular grid arre
gement as the solution of an over-determined system of linear equations following sc
additional constraints (Section 3).

e Second, the extension for an irregular grid is proposed through the use of high-or
Lagrange polynomials (Section 5).

o Eventually, specific artificial dissipation or hybridization with an high-order upwin
flux is proposed (Section 4).

In conclusion, the FD (respectively FV) proposed fluxes lead to conservative, ske
symmetric (respectively skew-symmetric-like), fourth-order schemes. From a practi
point of view, the previous schemes have been tested in an industrial code and have st
to behave well for various test cases, including steady and unsteady simulations (Sectic
and 8). The expected order is checked and a systematic improvement is obtained v
using the fourth-order instead of the second-order scheme. Additional tests (not repc
here) have clearly confirmed the stabilizing property of the skew-symmetric form.

10. APPENDIX: THEORETICAL DETERMINATION OF THE ORDER

This section proposes formal developments of truncation errors of the considered sche
up to sixth order. All developments are performed using the formal solver Mathematica :
are available on demand.

10.1. Finite volume vs finite difference approximationd/e recall that

o for the FD context, finding ath-order approximation of Eq. (1) consists of finding
an approximation of the derivativd, such as
UV  gFte  gEnum
- X - aX - ax

H

+ O(AY); (40)

e for the FV contextl); = 1/ )fvi U (x, Y, 2) dV}, and finding a high-order approx-
imation of Eq. (1) then consists of findingreh-order approximation of the fluxes at the
interfacex; ;.12 such as

L[ naa k[ gy P R
Vi v Ty ax Ay

_ Fiti2 + O(AQ:}/Z) — (Fic12+ O(Agtll/z)) (41)
Ax ’
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10.2. Finite difference approximation.
e Second-order schemehe fluxes 20 and 21 define respectively

E divFD Fdlv,FD

02I+1/2 02|,1/2 8uv div,FD
SAwyz 94 | T o , 42
A {axLH"Z ) e
sgewFD _ s;ewFD Juv
02i+1/2 0Zi_1/2 — OskewFD ) 43
A |:8X:|Xi+( * >Xi “

Standard Taylor expansions of the continuous varidlgle) andV (x) around poink; leads
to

) 2 2
(OB), = S+ Uy + (W 0u?), +O(a])  (ad)
2 2
(05™P), = %X U+ u"v)y + —AGX (W@ +0u®) +0(A%). (45)

The intuitive notatioru’ = du/dx; u” = 8%u/dx? is adopted. The corresponding schemes
are second order in space.
e Fourth-order schemd-or Egs. (27) and (29), the Taylor expansion leads to

; A% [35%uv
(0%7), = 536 | 5 | +0(89) (46)
(OSkeWFD) = A—i [u(3)v” + u”v(B)] + A—;l [u(‘bv/ +u@ V']
o4 Xi 6 Xi 12 Xi
A§ 5) 5) 6
—i—%[uv +uw®] +0(A). (47)

The corresponding schemes are fourth order in space.
o Sixth-order schemeg, , as defined by Eq. (22) can be found for higher-orde
schemes. The following flux

- 1
Fgé\fi’i?/z = @(UHSVi 43— 8Uij2Vije + 3Ui1Vi
+3MiVi — 8Ui1Vi_1 + Ui 2Vi o) (48)

used in Eq. (9) leads to

) A8
(Og(lsv,FD)Xi _ 17})(35”6)[](4) +35u@p@ 4 21"u® 4 210" + 7v'u®

+7uv® +0u? + )+ 0(AY). (49)
Concerning the skew-symmetric formulation, the flux
1
Foariaz = 753MUiVh + 450111V — Ui oV + UiysVi + Ui 2Via + UigaVi 2

—8Ui_1Vic1 — Wi 1Vica + UioVis + 49U Vi + Ui 5Vign — 9Ui_1Vi
+3Mi11Vigr — Ui Vige + Ui1Vigo — 8Ui2Viga + Ui Vigs + Ui3Vita)
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leads to

A6
(OSEQWFD)Xi = 1—2"0(151)(3>u(4) +15u@v@® 4 90"u® +9u"v® + 3v'u® 4 UV ®

Xi

—+— AY).

The corresponding scheme is sixth order in space.

10.3. Finite volume approximation.

e Second-order schemehe fluxes

Foen = (0 + Ui (Vi + Vii)/4,

div.Fv NN (50)

Foziziz = UiVi +Ui11Vig)/2

provide the following approximation df at the interface

diV,FV true 5 u/v/ vu// uv// 4
Foaitie =R, +A + + +0(Ay) (51)
4 6 6 Xit+1/2
and
u// u "
= i 0N+ ) o), (52)
Xit1/2

The fluxes thus propose a second-order approximation of the real flux at the interfe
leading to a second-order scheme in a FV context.
e Fourth-order schemél he previous high-order fluxes Egs. (28) and (30) give

i 7wy’ vu®  uv®  pu® @
div,FV 4 6
Foﬁﬂ/z:Ffi‘f}z—Ax( % s T 85 "a " 3 )X +0(A%) (53)
i+1/2
and

u’v” v/u(S) u/v(3) Uu(4) UU(4)
ESkewFV _ ptrue A4 O(A%). (54
04,i+1/2 i+1/2 X 9 + 24 + 24 + 30 + 30 x‘+1/2+ ( X) ( )

They propose a fourth-order approximation of the real flux at the interface, leading t
fourth-order scheme in a FV context.

e Link between FV and FDWith the previous explanations, the truncation error in
the FV context reads

Faniv12 = FEo — A"Fiy12 + O(A™?) (55)

with Fi 112 afunction of [9Pu/dxP) /(8% /3xY)]y,,,, with p+ g =n, which with Eq. (10)
leads to
Fitff/z - Fitr—ule/z FoFrY| +1/2 — Fc'):rYi—l/Z

= A"
A A + A

Fitre — Ficpe (56)
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Elue _ [Etrue EFV _ EFV 9F
i+1/2 i-1/2 _ Foni+1/2 oni-1/2 | An <> _ (57)
I

A A aX
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