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Developing high-order non-dissipative schemes is an important research task for
both steady and unsteady flow computations. We take as a starting point the “built-in”
de-aliasing property of the discretized skew-symmetric form for the non-linear terms
of the Navier–Stokes equations, recalled in Kravchenko and Moin [1]. Two families of
high-order locally conservative schemes matching this discretized skew-symmetric
form are considered and rewritten in terms of telescopic fluxes for both finite dif-
ference and finite volume approximations in the context of compressible flows. The
Jameson’s scheme [2] is shown to be the second-order member of larger families of
“skew-symmetric-like” centered schemes. The fourth-order finite volume and finite
difference and the sixth-order finite difference schemes which belong to this fam-
ily are provided. The proposed schemes are extended to shock capturing schemes,
either by modifying the Jameson’s artificial viscosity or by hybriding the centered
flux with Weno [3] fluxes. An adapted interpolation is proposed to extend the use of
the proposed schemes to non-regular grids. Several tests are provided, showing that
the conjectured order is properly recovered, even with irregular meshes and that the
shock capturing properties allow us to improve the second-order results for standard
test cases. The improvement due to fourth-order is then confirmed for the estimation
of the growth of two- (TS waves) and three- (Crow instability) dimensional unsta-
ble modes for both confined and free-shear flows. The last application concerns the
steady computation using the Spalart–Allmaras model of a separated boundary layer:
it confirms that the use of a high-order scheme improves the results, even in this type
of steady applications. c© 2000 Academic Press
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1. INTRODUCTION

Simulations of unsteady compressible flows are rapidly developing for applications such
as acoustics, multi-physics flow, and in a generic way, LES/VLES (large-eddy simulations,
very large-eddy simulations). These studies are no longer reserved to the research com-
munity but start a breakthrough in industrial-type applications. An important part of these
studies concerns the development of high-order numerical schemes. For example, Shuret al.
make use of a fourth-order centered and a fifth-order upwind scheme to perform detached
eddy simulations [4] for both isotropic turbulence as well as for flows around an airfoil at
high lift angle.

Although some LES are performed using second-order numerical schemes [5, 6], the
general idea is that LES require higher-order schemes, especially for the convective part
of the Navier–Stokes equations. The numerical errors can be considered as the sum of
truncation and aliasing errors as presented in Lilly [7] and in Kravchenko and Moin [1].
This means that the notion of order is not sufficient to characterize a numerical scheme: one
has also to consider properties such as conservation, dispersion, diffusion, or dissipation of
directly transported quantities and of their possible quadratic invariants (kinetic energy, for
example).

• The description of the convective terms.For compressible applications, weakly dis-
sipative schemes are often used, even for LES applications. Indeed, one has to face two
difficulties, which makes the built-in diffusion of some schemes attractive. First, most codes
devoted to compressible applications are written using collocated variables. This prevents
the users from benefitting from the stabilizing properties of staggered meshes. Second, com-
pressible applications such as internal aerodynamics sometimes generate spurious acoustic
waves, that may be damped by any built-in numerical diffusion.

However, as many modeling procedures are based on the Boussinesq approximation, i.e.,
on the use of an eddy viscosity ((V)-LES, U-RaNS, RaNS except second-order modeling),
the use of weakly dissipative schemes is seen as a requirement to reduce spurious numerics/
modeling interactions. This renders the use of centered schemes still attractive, because
they do not exhibit any spurious diffusion or dissipation (when considered independently
of the temporal scheme used to integrate the equation).

A far as the convective part of the compressible Navier–Stokes equations is concerned,
the mentioned properties of conservation, dispersion, and dissipation strongly depend on
the nature of the scheme (centered or upwind-biased) and on the form used for the dis-
cretization of the non-linear terms. This can be illustrated by considering the non-linear
one-dimensional scalar equation

∂U

∂t
+ H = ∂U

∂t
+ ∂U V

∂x
= ∂U

∂t
+ ∂F(U )

∂x
= 0. (1)

Although the divergence

Hdiv = ∂U V

∂x
, (2)

convective

Hconv= U
∂V

∂x
+ V

∂U

∂x
, (3)
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and skew-symmetric forms

Hskew= 1

2

(
∂U V

∂x

)
+ 1

2

(
U
∂V

∂x
+ V

∂U

∂x

)
(4)

are equivalent at the continuous level, these discretized forms do not have the same properties
of conservation and stability. It is commonly admitted that kinetic energy conservation is
a key feature for the stability of unsteady computations. This property is ensured in the
incompressible limit by the skew-symmetric form (Eq. (4)) for centered schemes (see [1, 8],
among many).

Conservation of quadratic quantities (such as kinetic energy) is presented as a result-
ing property of aliasing errors minimization in [7, 1]: Fourier analysis of forms (1) to
(4) shows that it is the skew-symmetric form that minimizes aliasing errors. Conservation
and de-aliasing properties of schemes have been extensively studied in the mid-1960s by
the geophysical community and proper solutions have been proposed: the former work of
Arakawa [9] has been extended by Lilly [7] to the primitive equations of motion, includ-
ing eventually compressibility (see [7, Eq. 2.10]). Lilly derived a systematic way to get
the quadratic-conserving representation of the transported quantities up to second order.
As mentioned by a referee, the use of a skew-symmetric form for compressible flow is
introduced in Feiereisenet al. [10].

• Local conservation and finite volume formulation.A property of importance for the
numerical scheme is local conservation of transported quantities, which is the numerical
translation of the conservation laws over a fixed finite volumeÄ of fluid, and reads, for the
previous one-dimensional equation,

∂
∫
Ä

UdÄ

∂t
+
∫

S(Ä)
F · dS= 0, (5)

whereF is the flux at the surfaceS(Ä), oriented with the unit normal vectordS. Let us
consider the celli , located at positionxi , of interfaces located atxi+1/2 and xi−1/2 (see
Fig. 1). For Eq. (1), the discretized counterpart of Eq. (5) is written

∂
∫
Ä

UdÄ

∂t
+ Fi+1/2Si+1/2− Fi−1/2Si−1/2 = 0, (6)

FIG. 1. Principle of interpolation for finite volume scheme on an irregular one-dimensional grid. An optimal
fictitious regular grid is defined. The corresponding cells dimension is denoted by1∗i . The interfacei + 1/2 where
the flux is evaluated remains at the same location.
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Fi+1/2Si+1/2 being the flux through the interface located ati + 1/2 (F =U V). Equation
(6) ensures that any fluxFi+1/2Si+1/2 leaving the celli goes into celli + 1. This obviously
ensures exact conservation ofU and is known as the telescopic property introduced by Lax
and Wendroff [11]. This property is of first importance for finite volume formulation and
for compressible problems.

As shown by Eq. (4), typical skew-symmetric schemes are not written in a locally con-
servative form, which is not an issue in a finite difference (FD) context for incompressible
flows but can be more questionable when used for compressible applications and is incom-
patible with the finite volume (FV) formulation. Recently, Morinishiet al. [8, 12] derived
conservative second- and fourth-order schemes for LES of incompressible flows, including
non-uniform grid arrangement studies. A recent solution to get high-order conservative
skew-symmetric schemes was also derived by Veldman and Verstappen [13] for staggered
meshes: this work emphasizes the conservative properties of the skew-symmetric form and
proposes an original way to take varying meshes into account. However, its application
to full Navier–Stokes equations requires the definition of two control volumes, one being
three times larger than the standard control volume [14]. So, the issue of locally conservative
schemes matching the skew-symmetric form and compatible with Eq. (6) is still an open
question.

• The search for finite volume/finite difference conservative schemes with skew-symmetric
properties for compressible flows.The present work is motivated by the search for high-
order non-dissipative but numerically stable conservative schemes to perform unsteady cal-
culations of compressible flows oriented towards LES and/or VLES. It is mainly inspired
by

• the interest of the built-in de-aliasing property of the skew-symmetric form of cen-
tered schemes,
• the necessity of developing an implicit time marching method for unsteady calcu-

lations in complex geometry, which leads in practice to consider separate time and space
integration.

This leads us to consider the following points:

• Whatever the interest of conservation of some quadratic quantities (such as kinetic
energy) that comes along with the use of the skew-symmetric form of the convective term
in the context of incompressible flow (see [1]), the use of such schemes for compres-
sible flows is, for us, first motivated by the benefit obtained from the built-in de-aliasing
property mentioned before. For the compressible equations considered here, kinetic en-
ergy is in balance with acoustic energy and we will not develop any discussion concern-
ing its conservation: the interested reader is asked to refer to the existing literature. For
the following, the conservative properties of the scheme will refer to the conservation of
transported quantities, which will be guaranteed by the use of the flux-based formulation
(Eq. (6)).
• The skew-symmetric form has already been used in conjunction with many different

methods: spectral schemes [15], Pad´e schemes [16, 17], and more basically centered differ-
ence schemes (the last reference in that context is [12]). However, the use of such a form in a
finite volume context, i.e., in a formulation based on Eq. (6), has, to the author’s knowledge,
never been exposed. The determination of such fluxes is the key issue of the paper. In order
to be complete, the text will provide fluxes that when used will bring standard divergence
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or skew symmetric forms (see the precise definition below) for both finite difference and
finite volume contexts.

This limitation of the work will have the following consequences:

• Because we solve compressible Navier–Stokes equations, the conservative variables
are chosen and the pressureP is explicitly solved. So, contrary to what has been done in
[12] and other work, we do not take special care for the continuity equation∂ρ/∂t +
∂ρui /∂xi = 0; the resolution is performed using the proposed fluxes, either in divergence
or in skew-symmetric form.
• We will not follow the same discrimination between the divergence and the skew-

symmetric forms as Morinishiet al. [12]. We will call the divergence (respectively skew-
symmetric) form of ordern any discretization of Eq. (1) that will match the discretization of
Eq. (2) (resp. Eq. (4))using the nth order central differencing scheme.This classification lays
emphasis on the aliasing error reduction coming from the skew-symmetric form (see [6, 18]).
Moreover, our definition asserts the fact that the skew-symmetric and the divergence forms
match in the compressible context at a discretized level only if the convection equation is
a linear one. The direct consequence is that the relations provided in Morinishiet al. [12]
are incompatible with the present definition.

As introduced in [19], the starting point of the proposed family of fluxes is the original
scheme developed by Jamesonet al. [2] and the fact that it is equivalent to a second-order
skew-symmetric scheme (see below and [6, 18]).

We propose high-order (second, fourth, and sixth) centered skew-symmetric FD schemes
and high-order (second, fourth) centered skew-symmetric-like FV schemes. All these sche-
mes are developed for collocated variables and match the telescopic conservative property of
Eq. (6). As they are centered, they do not present any diffusion for the transported quantities,
at least for one-dimensional problems and non-diffusive time integration.

The paper is organized as follows. First, the formulations of the fluxes involved in FD
or FV discretization of the Euler equations are recalled (Subsection 2.1). To concentrate on
conservation properties, both FD and FV discretizations are rewritten as flux divergences
(Eq. (6)). Thesecond-orderJamesonscheme (SOJS) is then presented, including the formu-
lation of the fourth- and second-order artificial dissipations (Subsection 2.2). The constraints
on the searched schemes (centered, skew-symmetric-like, controlled order) are formulated
in a mathematical way, which leads to a linear system, for which the SOJS is the only
solution corresponding to the second-order scheme (Section 3). The particular solutions
concerning the fourth-order are then proposed (Section 3). An extension of the schemes
to varying meshes (Section 5) and an adaptation of the centered flux to shock-capturing
schemes using either modified second-order artificial viscosity or hybridazation with a fifth-
order Weno scheme (Section 4) are finally proposed. The schemes are implemented in an
industrial solver (Section 6). The results concerning one-, two-, and three-dimensional test
cases are then proposed and prove the good behavior of the numerical method (Sections 7
and 8). The complete Taylor expansion showing the order of the schemes is provided in an
appendix, together with the sixth-order scheme of the proposed family. All schemes pre-
sented here are derived for structured data. In the following, the conservative property that
is verified by the presented schemes concerns the transported quantities. The conservation
of the kinetic energy is ensured through the skew-symmetric form in the incompressible
limit (see [1]).
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2. CONSERVATIVE SCHEMES

2.1. Generalities on conservative schemes.For all following developments, variables
are collocated and cell-centered: they stand alternatively for the local (for FD,Ui, j,k=
U (xi, j,k)) or for the mean value ofU over the cell (for FV,Û i, j,k= 1

V
∫
V(xi, j,k)

U (x) dx,
V(xi, j,k) is the volume of the cell located atxi, j,k in the physical space and designed by
the coordinatesi, j, k in a structured code). LetSi+1/2, j,k be the surface of the interface
between cellsi, j, k andi +1, j, k. Let us consider the local Euler equations, involving the
fluxesFn in thenth direction,

∂W

∂t
+ div(Fn) = 0, (7)

with

W = (ρ, ρu1, ρu2, ρu3, ρe)T , Fn(W) =



ρun

ρunu1+ pδn1

ρunu2+ pδn2

ρunu3+ pδn3

un(ρe+ p)


, div(Fn) =

3∑
n=1

∂Fn

∂xn
.

(8)

un is the local velocity in thenth direction. For simplicity, only semi-discrete schemes and
one-dimensional conservation equations will be considered. We restrict our search to locally
conservative schemes. Such schemes can therefore be written in a form that matches the
Lax and Wendroff telescopic property. Then, the discretization of Eq. (8) in the directioni
using either a cell-centered FD or FV technique can be expressed as

∂Wi

∂t
+ FFD

i+1/2− FFD
i−1/2

1i
− EFD

i = 0, (9)

Vi
∂Ŵi

∂t
+ FFV

i+1/2Si+1/2− FFV
i−1/2Si−1/2− EFV

i = 0. (10)

EFV
i andEFD

i stand for the truncation error of the method.FFD
i+1/2 andFFV

i+1/2 are the numer-
ical fluxes at the interface between cellsi andi + 1. As far as FD and FV approaches are con-
cerned, one may distinguish between:

• High-order FD schemes, where a high-order approximation of the derivative( ∂F
∂x )i

at pointi is looked for. The evaluation of the order directly comes from the Taylor expansion
of the considered derivatives at pointi involved in the local form of Eq. (7).
• High-order FV schemes, where a high-order approximation of the fluxF at the

interface is looked for. The evaluation of the order directly comes from the Taylor expansion
of the flux at the considered interfacei + 1/2. As detailed below, only the direction splitting
method for FV will be considered here (cf. Section 3). A real multi-dimensional FV scheme
will not be built here. However, the improvement due to an “high-order directionally split
FV scheme” will be shown for many applications.

Formally, Eqs. (9) and (10) reduce to the same form when the mesh is regular:Vi =V,
Si−1/2=Si+1/2=S, andV/S =1, except that FD formulations deal with local values
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of the fieldsUi , whereas FV formulations deal with averaged valuesÛ i . Finding proper
expressions of the fluxesFFD

i+1/2(W) andFFV
i+1/2(Ŵ) is the motivation of the present paper.

2.2. Second-order Jameson scheme (SOJS).For the SOJS and for both FV and FD
contexts (see below, Eq. (17)), the numerical fluxFi+1/2 is approximated by

Fi+1/2 = F
(
Wi+1/2

)− di+1/2, (11)

wheredi+1/2 is a combination of second- and fourth-order artificial dissipation [2], with

di+1/2 = do2
o2,i+1/2+ do4

o2,i+1/2, (12)

do2
o2,i+1/2 = ε(2)i+1/2(Wi+1−Wi ), (13)

do4
o2,i+1/2 = −ε(4)i+1/2(Wi+2− 3Wi+1+ 3Wi −Wi−1), (14)

and

ε
(2)
i+1/2 = k(2)Ri+1/29i+1/2, (15)

ε
(4)
i+1/2 = max

(
0.0, k(4)Ri+1/2− ε(2)i+1/2

)
. (16)

k(2) andk(4) are real numbers fixing the amount of diffusion brought up by the second-
and fourth-order dissipative operatorsdo2

o2 anddo4
o2 (the superscriptso2 or o4 are related to

the order of the diffusion operator used for the dissipation; the subscripto2 is related to
the order of the scheme on which it applies).Ri+1/2 is the spectral radius of the jacobian
matrix ∂F/∂W at the cell facei + 1/2. The aim of the fourth-order artificial dissipation
is to control (by preventing them) spurious oscillations. When the second-order artificial
dissipation is switched on, the global scheme is close to an hybridization between centered
and upwind schemes and is able to capture the shocks;9i+1/2 is a sensor based on pressure
fluctuations (see Jameson [2, 20, 21]).

A Taylor expansion ofWi in the cell centered aroundi shows that

Ŵi −Wi = 12

24

(
∂2W

∂x2

)
i

. (17)

This explains that the confusion between the FD and FV approximations can be made up
to second order. We now expose two possible formulations forF in Eq. (11), one of them
constituting the original Jameson scheme (see below).

2.3. A family of centered schemes.Up to Section 4,k(4), k(2) of Eqs. (15) and (16)
are set to zero. The role played by the non-linearities and their different formulations
(Eqs. (2)–(4)) in the complete compressible Navier–Stokes equations can be studied first
on the one-dimensional scalar Eq. (1).

At first sight, all forms (Eqs. (2)–(4)) are meaningful in the FD context, but only the
divergence form (Eq. (2)) can be used in the FV context. However, it is easy to identify
in the existing literature the fluxesFi+1/2 that, when plugged into the discrete divergence
conservative form 9 or 10, will lead either to the second-order discretized divergence form
(Eq. (2)) or to the second-order discretized skew-symmetric form (Eq. (4)).
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Let us consider the developed expression of the second-order discretized divergence form

∂Ui

∂t
+ Ui+1Vi+1−Ui−1Vi−1

21x
= Ediv

o2,i (18)

and of the second-order discretized skew-symmetric form

∂Ui

∂t
+ 1

2

(
Ui+1Vi+1−Ui−1Vi−1

21x

)
+ 1

2
Ui

(
Vi+1− Vi−1

21x

)
+ 1

2
Vi

(
Ui+1−Ui−1

21x

)
= Eskew

o2,i .

(19)

It is easy to show that Eq. (18) is obtained when plugging

Fi+1/2 = (Ui Vi +Ui+1Vi+1)/2= Fdiv
o2,i+1/2 (20)

in Eq. (9) or (10); whereas Eq. (19) is obtained when plugging

Fi+1/2 = F(Ui+1/2) = (Ui +Ui+1)

2

(Vi + Vi+1)

2
= Fskew

o2,i+1/2 (21)

in Eq. (9) or (10) (see previous studies [6, 18, 19]). Please notice that the fluxes are written
together with the mention of the discretization they produce (skew or div in superscript); the
order is made precise by the subscript (o2 here). Equation (19) corresponds to the scheme
given by Eq. (66) of Morinishiet al. [12]; it also corresponds to the SOJS.

ReplacingU by Û in Eqs. (18)–(21) leads to the same formal developments (see the
Appendix). In conclusion, the Jameson scheme is a second-order conservative FD scheme
in skew-symmetric form, or a second-order conservative FV scheme, where the flux diver-
gence (as defined in Eq. (10)) is formally as close as possible to the standard skew-symmetric
discretization (and is therefore denoted by “skew-symmetric-like”). For the present devel-
opments and since Eq. (17) holds, the corresponding FV form is identical to the FD one;
there is no need to specify the FV or FD context here and the differences between the
two schemes stands only at the concept level. This is no longer the case for higher-order
schemes.

3. HIGH-ORDER EXTENSION ON REGULAR GRIDS

We now investigate the possibilities of constructing similar fluxes fornth-order centered
schemes (n being an even number). For this, we introduce the more general non-linear flux
that can lead to such schemes, first in the FD context (k, p are integers),

FFD
on,i+1/2 =

∑
k,p∈{i−n/2+1,i+n/2}

βk,pUi+pVi+k. (22)

Theβk,p are scalars depending only on the order of the scheme and on the local metrics.
Notice that this procedure is similar to the one used by Lilly [7].

With k= p, we will seek for divergence schemes, whereas skew-symmetric schemes
should be found with two different indices. In a very similar manner we write theO(n)
approximation of the derivative of the scalarU at cell i as(

∂U

∂x

)
i

= 1

1

∑
l∈{i−n/2,i+n/2}

γl Ui+l . (23)
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γl is directly obtained using standard Taylor expansions. In order to get consistent schemes,
the coefficients should obey the following constraints:

∑
l γl = 0 and

∑
k,p βk,p= 1. Cen-

tered schemes are obtained forγl = γ−l , γ0= 0. The schemes we are looking for are deter-
mined by theβk,p, solutions of

Hdiv =
∑

l∈{i−n/2,i+n/2}
γl

Ui+l Vi+l

1
=

∑
k∈{i−n/2+1,i+n/2}

βk,k
(Ui+kVi+k −Ui−1+kVi−1+k)

1
(24)

for a scheme in divergence form (search forFdiv,FD
on,i+1/2) and of

Hskew= 1

2

∑
l∈{i−n/2,i+n/2}

(γl Ui+l Vi+l +Ui (γl Vi+l )+ Vi (γl Ui+1))

1

=
∑

k,p∈{i−n/2+1,i+n/2}
βk,p

(Ui+pVi+k −Ui−1+pVi−1+k)

1
(25)

for a scheme in skew-symmetric form (search forFskew,FD
on,i+1/2). For a given ordern, the solution

of Eq. (24) is unique; whereas Eq. (25) leads to a over-determined system of linear equations.
The general solution of Eq. (25) for an arbitrary ordern was not looked for. We provide
hereafter a solution forn= 4; a solution forn= 6 is proposed in the Appendix.

The problem in the FV context is formulated nearly in the same manner. We introduce
the flux

FVF
on,i+1/2 =

∑
k,p∈{i−n/2+1,i+n/2}

β ′k,pÛ i+pV̂ i+k (26)

and, as suggested in the previous section, we look for the FV scheme, which presents the
flux divergence as close as possible to the FD skew-symmetric or divergence form of same
order: the corresponding fluxes will be superscriptedskew, FVor div, FV in the following.

Let us consider regular grids in this section. For sake of clarity, the proofs concerning
the order of the different schemes are reported in the Appendix.

3.1. Divergence form. It corresponds tok= p and leads to

Fdiv,FD
o4,i+1/2 =

1

12
(−Ui+2Vi+2+ 7Ui+1Vi+1+ 7Ui Vi −Ui−1Vi−1), (27)

Fdiv,FV
o4,i+1/2 =

1

12
(−Û i+2V̂ i+2+ 7Û i+1V̂ i+1+ 7Û i V̂ i − Û i−1V̂ i−1)

+ 1

3

(
1

2
(Û i+1V̂ i+1+ Û i V̂ i )− 1

4
(Û i+1+ Û i )(V̂ i+1+ V̂ i )

)
, (28)

which provides conservative centered fourth-order schemes for the FD and FV contexts,
respectively. We recall that the cancellation of aliasing errors directly comes from the skew-
symmetric form and holds for all similar expressions, whether this expression involves local
(FD context) or averaged (FV context) values. There is thus no built-in de-aliasing in fluxes
27 and 28. That is why we look for skew-symmetric and “skew-symmetric-like” forms.
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3.2. Skew-symmetric and skew-symmetric-like forms.In the FV context, a real high-
order scheme(n> 2) is difficult to derive for a multi-dimensional context, just because
the estimation of the flux at an interface as derived for the one-dimensional case is not
enough. One should take into account the variation of the flux along the interface in other
directions than the direction normal to the interface. Some solutions based on real multi-
dimensional schemes have been proposed that lead to very expensive schemes. Under these
circumstances, it appears to us that deriving a fourth-order FV scheme in a one-dimensional
manner can be of interest, because of its analogy with the FD context described before.

A solution of Eq. (25) is

Fskew,FD
o4,i+1/2 =

1

3
(Ui +Ui+1)(Vi + Vi+1)− 1

24
(Ui−1Vi−1+Ui−1Vi+1+Ui Vi +Ui Vi+2

+Ui+1Vi+1+Ui+1Vi−1+Ui+2Vi +Ui+2Vi+2). (29)

The finite volume counterpart expression reads

Fskew,FV
o4,i+1/2 =

1

3
(Û i + Û i+1)(V̂ i + V̂ i+1)− 1

24
(Û i−1V̂ i−1+ Û i−1V̂ i+1+ Û i V̂ i

+ Û i V̂ i+2+ Û i+1V̂ i+1+ Û i+1V̂ i−1+ Û i+2V̂ i + Û i+2V̂ i+2)

+ 1

3

(
1

2
(Û i+1V̂ i+1+ Û i V̂ i )− 1

4
(Û i+1+ Û i )(V̂ i+1+ V̂ i )

)
. (30)

Equations (29) and (30) provide the fourth-order schemes for the FD and FV context,
respectively. The flux 30 can be seen as the closer counterpart in the FV context of the
skew-symmetric FD scheme provided by Eq. (29). Notice that Eq. (29), together with
Eq. (9), corresponds to Eq. (72) of Morinishiet al.

Remark 1. Applying standard (non-compact) centered derivatives in the FD approxi-
mation of the skew-symmetric form Eq. (4) defines the same scheme as the one given by
Eqs. (9) and (29) (Eq. (72) of Morinishiet al.). So, despite its formulation involving a
non-conservative term such asUi ∂Vi /∂x+Vi ∂Ui /∂x, the resulting scheme is conservative
and matches the telescopic property.

4. SHOCK CAPTURING SCHEMES

Some applications involving strong discontinuities may also require the use of a low-level
dissipative scheme in other parts of the flow. This is the case for turbulent flow developing to-
gether with interface corrugations (Rayleigh–Taylor and Richtmyer–Meshkov instabilities,
shock-turbulence interaction). This is also the case for stationary and unsteady aerodynam-
ics applications (flow around an aircraft in transonic cruise conditions, for example).

For both situations the use of the previous scheme may be suggested, provided some
procedure to cope with discontinuities may be found. We hereafter present two ways to
construct such a scheme:

• The first one consists of the use of artificial viscosity, as done for the SOJS (see
Eqs. (11)–(16), together withk(2) > 0). To understand how this dissipation works, the one-
dimensional linear scalar equation

∂U

∂t
+ a

∂U

∂x
= 0, a > 0 (31)
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is often considered [22]. The use of the SOJS applied to this equation leads to a second-
order centered scheme, except in the region where the second-order dissipationdo2

o2 acts.
Assuming that the expressionε(2) (see Eq. (13)) takes locally the valuea/2, then the flux
globally reads

F(Ui+1/2)− do2
o2,i+1/2 = aUi , (32)

Fi+1/2− Fi−1/2−
(
do2

o2,i+1/2− do2
o2,i−1/2

) = a(Ui −Ui−1). (33)

The scheme is locally switched from centered second order to upwind first order. This
property (the “upwind connection” in Swanson and Turkel [22]) is advocated to explain
the “good” behavior of the Jameson scheme applied to equivalent non-linear systems [6].
Let us calldo2

o4 the artificial viscosity that would be added to the fourth-order flux to get an
upwind like scheme. The first choice is of course

do2
o4 = do2

o2, (34)

for which the global fluxFo4,i+1/2− do2
o4,i+1/2 is not able to switch to a true upwind scheme,

whatever the valueε(2). A better adapted artificial viscositydo2
o4 can be built so that the

expressionFo4,i+1/2− do2
o4,i+1/2 may recover the same upwind scheme as in Eq. (33) for

ε(2)=a/2:

do2
o4,i+1/2 =

2ε(2)i+1/2

12
(−Ui+2+ 7Ui+1− 5Ui −Ui−1). (35)

Notice that, as the main objective of this artificial viscosity is to make the scheme switch
from a central to first-order upwind scheme, no special care is required to distinguish
between FD or FV schemes here.

• The other solution consists in an hybridization between the centered scheme and an
upwind one in regions where discontinuities occur. The corresponding flux reads as

Fi+1/2 = 8i+1/2Fo4,i+1/2+
(
1−8i+1/2

)
Fupwind. (36)

In order to preserve high-order,Fupwindmay be the flux given by a fifth-order Weno scheme
[3]: this gives the C4W5-hybridization scheme. Theweightedessentiallynon-oscillatory
(Weno) scheme consists of building a high-order ENO reconstruction procedure together
with a Riemann solver (Roe solver in practice here).8 is a sensor that detects the steep
gradient regions;8=9 is the first choice [6]. In this context and as the Weno formulation
relies on high-order schemes, a special care concerning the context of FD or FV should be
taken to build a consistent scheme.

These two methods are to be used in different conditions. The second one is of course
more accurate and is recommended for unsteady simulations, although it is more expensive.
However, the former, even if it is cruder, is cheaper and allows better convergence properties
for steady simulations. Indeed, such a hybridization can make the scheme switch from one
form to another one for some cells, preventing the corresponding local residual from going
to zero, even with an efficient Newton method.
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5. NON-UNIFORM GRID SYSTEM

The global order of a given method goes down for any varying meshes if the mesh
variations are not taken into account. Recent works [13] propose to account for the metrics
in a “weak way,” preferring to conserve stability properties of the scheme for the “global
discretization,” rather than ensuring a constant and known “local discretization error”: this
leads to a reduced order (up to first-order) but stable scheme (see Veldman and co-workers
[13, 23]). As pointed out in Morinishiet al. [12], one must make a choice between strict
conservation and maintaining accuracy.

In a first attempt, we try to stick to standard approaches and to maintain the local order
of the scheme when using varying meshes. As clearly exposed below, this will lead to
fourth-order schemes, able to ensure the local conservation of the transported quantities but
unable to ensure kinetic energy conservation, which is consistent with the global approach
developed here. The main difficulty in extending the present scheme to non-uniform grids
relies on the fact that non-local products arise in the formulations of the fluxes. The problem
formulated in Eqs. (24) and (25) and in their counterparts for the FV context can be refor-
mulated in order to take into account the mesh variation (γl andβk,p are functions of the
node positionsxi , xi+1, etc.). However, if we can find a solution for the divergence form, no
solution can be found for the skew-symmetric form. A direct derivation of the metric based
on a standard Taylor expansion is thus not possible. It is the reason why we only retain the
two following ways to take the metrics into account.

5.1. Finite difference context.A practical way to deal with the non-uniform grid is
to consider a derivable mapping between the real grid(x, y, z) and a regular mapping
(ξ(x, y, z), η(x, y, z), φ(x, y, z)). Then, the standard method relies on the development
based on Jacobian matrices,

∂F

∂x
= ∂F

∂ξ

∂ξ

∂x
+ ∂F

∂η

∂η

∂x
+ ∂F

∂φ

∂φ

∂x
, (37)

which ensures the global order of the derivatives to be conserved, provided the order of
all derivations is homogeneous. In practice it is recommended to use the same scheme for
all derivatives [13, 24]. But we did not manage to find any conservative approximation of
Eq. (37).

Remark 2. The “conservativity” of the scheme can be maintained for a flux of the
form FFD,i+1/2Gi+1/2,Gi+1/2 being an estimation of( ∂ξ

∂x )i . However, such an estimation is
possible only up to first order, which makes the global order of the scheme decrease. The
property of conservativity of the standard skew-symmetric schemes derived using centered
derivatives discussed in Remark 1 is thus limited to the regular grid.

5.2. Finite volume context.We now present the generalization of this scheme in an
irregular Cartesian context. The method presented here directly applies to any FV centered
scheme and was inspired by Shu [3]. Of course for 2 or 3 dimensions, the global order of the
scheme will fall to second order, for the reason coming from Eq. (17). We recall that from
a practical point of view, FV schemes based on one-dimensional stencils provide obvious
improvements compared to lower-order schemes.

Because we have a high-order scheme on regular meshes, the idea simply lies in the
possibility to use this scheme on a fictitious regular grid. We present here a method to
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realize this idea in a simple way. At each interfacei + 1
2, we associate a fictitious regular

grid, whose spacing1∗i is chosen to be the optimal spacing (according to a certain criterion
made precise below) over the stencil used for the calculation of the flux. Since we will use
an interpolation polynomial, the fictitious grid is proposed to be the largest that can be used.
As shown in Fig. 1, the grid spacing1∗i is then defined by

21∗i = min(1i−1+1i ,1i+1+1i+2). (38)

We focus on high-order approximation of the flux at the interfacei + 1
2. Given the mean

valuesÛ j , J ∈ {i − 1, i, i + 1, i + 2} on the irregular mesh, we can obtain high-order ap-
proximation of the mean valueŝU ∗j , J ∈ {i − 1, i, i + 1, i + 2} on the optimal fictitious grid.
The method to recover these mean values is as follows: we first define the primitive ofU
over the considered stencil

V(x) =
∫ x

x
i−2+ 1

2

U (ξ) dξ.

The knowledge of the mean values on the irregular grid is equivalent to the knowledge of
the primitive at interfaces since

V
(
xj+ 1

2

) = ∫ x
j+ 1

2

x
i−2+ 1

2

U (ξ) dξ

=
j∑

k=i−2

Û k1k, j ∈ {i − 2, i − 1, i, i + 1, i + 2}.

We now define the Lagrange polynomialP(x) which interpolates the primitiveV at the
locations of the interfaces,

P(x) =
i+2∑

j=i−2

V
(
xj+ 1

2

) i+2∏
k=1−2,k 6= j

x − xj+ 1
2

xk+ 1
2
− xj+ 1

2

.

This polynomial provides the following approximation in case of a regular mesh,

P(x) = V(x)+O(15) ∀x ∈ [xi−2+ 1
2
, xi+2+ 1

2

]
.

In case of an irregular mesh, the order of approximation is linked to the derivative of
order 5 of V , and to the distribution of the grid points. Nevertheless, we assume that
for reasonable grid stretching rates, this approximation remains suitable, and we denote
1= max((1 j ) j∈{i−1,i,i+1,i+2}). The coordinates of the fictitious grid are defined such that
the interfacei + 1

2 under concern has not moved,

x∗i+k+ 1
2
= xi+ 1

2
+ k1∗i , k ∈ {−2,−1, 0, 1, 2}.

The pointwise values ofP at these locations yield

P
(
x∗i+k+ 1

2

) = ∫ x∗
i+k+ 1

2

x
i−2+ 1

2

U (ξ) dξ +O(15).

Consequently the fictitious mean values can be approximated at high order in the following
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way,

Û ∗j =
1

1∗i

[
P
(
x∗j+ 1

2

)− P
(
x∗j−1+ 1

2

)]+O(14), j ∈ {i − 1, i + 2}.

Note that the subscript of1∗i is i , no more depending on the locationj since the fictitious
grid is regular. The order of approximation finally obtained (4) is consistent with the order
of the proposed scheme (4). The complete formula is

Û ∗j '
1

1∗i

i+2∑
j=i−2

j∑
k=i−2

Û k1k

 i+2∏
k=i−2,k 6= j

x∗
j+ 1

2
− xj+ 1

2

xk+ 1
2
− xj+ 1

2

i+2∏
k=i−2,k 6= j

x∗
j−1+ 1

2
− xj+ 1

2

xk+ 1
2
− xj+ 1

2


which explicitly gives the fictitious mean values from the real mean values and the local
metric of the mesh. Once this reconstruction is done, the original numerical FV flux can be
simply applied to the reconstructed mean values in order to evaluate the flux at interface
i + 1/2.

As stressed before, the resulting schemes conserve the transported quantities, and the use
of the proposed interpolation has two consequences:

• First, it can act as a smoothing that could be able to dissipate kinetic energy. One
may draw some parallel between the present interpolation and the standard parabolic inter-
polation appearing in the piecewise parabolic method (see Collela and Woodward [25]).
• Second, it interferes with the strictly skew-symmetric form, and therefore results in

an increase of aliasing errors.

6. IMPLEMENTATION

The previous schemes are now called SOJS for the second-order Jameson scheme,
COSSYL-FV4 (respectively, -FD4) for the fourth-order conservative skew-symmetric FV
(respectively FD) like schemes. All have been implemented in a vectorial/parallel version of
the FV structured multi-block solver NSMB developed in an academic/industrial type con-
sortium gathering A´erospatiale, Saab, CERFACS, KTH, and EPFL [26]. This code solves
the complete compressible Navier–Stokes Eqs. (7) and (8), together with LES and RaNS
modelings. Independent implementation and tests of the sixth-order scheme in a “research
code” prove that it performs well, even better than the fourth-order scheme for the Cartesian
grid. However, if the existing NSMB architecture is well adapted to the stencils involved in
the fourth-order schemes, it is not the case for the larger stencils involved in the sixth order,
which is no longer considered in the present paper.

As stressed by the rewriting of the FD scheme in a conservative manner (see Eq. (9)), one
can easily switch from a FV to a FD code for Cartesian meshes, which allows the testing
of both types of approaches. As far as time integration is concerned, standard Runge–Kutta
explicit as well as implicit time integrations can be used, since the proposed schemes rely
on separate time and space discretizations. For explicit Runge–Kutta schemes, the stability
condition adapted for the present schemes is not different from the stability condition
arising for standard centered schemes; the interested reader can find all the details in [27].
For implicit integration, no stability condition arises and we make use of the scheme already
available in the solver, namely, a Newton method based onlower-upper-symmetricGauss–
Seidel (LU-SGS) schemes for steady flows, developed by Weber [18, 28].
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TABLE I

Estimation of the CPU Cost of Several Schemes Used for Compressible Application,

Normalized by the Cost of the SOJS

Scheme SOJS COSSYL-FV4 No Met. Weno-Roe

CPU cost 1 1.2 5

Scheme C4W5-hybridization COSSYL-FV4 Fu. Met. Weno-Roe Fu. Met.

CPU cost 1.2≤ ·≤5 4 15

Note.The present cost concerns the time spent to evaluate the Euler part of Navier–Stokes equations;
No Met. stands for no metric; Fu. Met. for full metric. The cost of the C4W5-hybridization scheme
strongly depends on the test case and on the way to implement the two fluxes.

Table I provides an estimation of the CPU cost of several schemes used for compressible
applications, normalized by the cost of the SOJS. The present cost concerns the time spent
to evaluate the spatial derivatives (building of the fluxes and divergence estimation) and
concerns only direction splitting schemes: no true multi-dimensional scheme is considered
here. Relating directly the results of the following test cases to the properties of the pro-
posed schemes can be done as follows. The advantage of using an high-order scheme will
clearly appear in the examples. However, the aliasing reduction due to the use of the skew-
symmetric form appears at small scales (see Kravchenko and Moin [1]). This means that
the use of the divergence form in most of the presented cases where the skew-symmetric
form performs well will end in a blow-up of the code. This is due to spurious oscillations
in the thermodynamic fields: most of this unfavorable behaviour is related with wiggle
developments. In consequence, no simulation will be presented using the divergence form.

7. LAMINAR ONE- AND TWO-DIMENSIONAL TEST CASES

The global order of each scheme is proved in the Appendix using formal mathematical
developments. We hereafter provide numerical tests, showing the good behaviour of the
proposed schemes.

7.1. One-dimensional test case.The aim of this section is to compare numerical with
reference solutions in some particularly simple configurations such as acoustic waves or
one-dimensional shocks. For this, we consider the evolution of the cumulative error as a
function of1(n)

ε(n) =
n∑

i=1

∥∥ρi − ρ th
i

∥∥, (39)

whereρ th
i is the analytical solution of the problem at the considered time andn is the number

of points used for discretization of a domain of fixed lengthLx;1(n)= Lx/(n− 1).
• Acoustic wave.We first consider the case of a Gaussian acoustic waveρ(x)= ρ0+

δρe−(1/σ
2)(x−Lx/2)2 that propagates in a periodic domain of lengthLx = 1 for the Euler

equations,σ = 0.03, andδρ= 0.01. The use of similar test cases to investigate dispersive
and diffusive properties of schemes is usual; see [29], for example. Obviously, the order
of the scheme is recovered on a regular grid. Moreover, in order to check the order of the
proposed COSSYL-FD4 metric and COSSYL-FV4 metric schemes, two fixed stretchings
(5 and 15%) are investigated. The resolution varies between 200 and 1600 points. For each
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mesh, the domain is discretized in five zones: (1) zone 1, the step sizedx1 is constant;
(2) zone 2, the step size is locally refined with a fixed stretching over 20 points,dxi thus
varies fromdx1 to dx2; (3) zone 3, the constant step sizedx2 is taken overLx/2; (4) zone 4,
the step size then increases fromdx2 todx1; (5) zone 5, the step size is constant and equal to
dx1. This allows us to test the effect of mesh stretching on the solution, the ratio between the
smaller and the larger cells being kept constant. Figure 2 providesε(n) for the SOJS and the
COSSYL-FD4 and COSSYL-FV4 schemes after one convection time (the wave is back on
its initial location). Despite the stretching and thanks to the skew-symmetric formulation,
the presents results are obtained without artificial damping (k(4)= k(2)= 0). The results
obtained with the fourth-order schemes are always better than the one obtained using the
second-order scheme. Only the consideration of the metric can ensure the expected order,
which is quite intuitive.

FIG. 2. Error between the analytical and calculated solutions for an acoustic wave, for 5% (top) and 15%
(bottom) stretching. “No metric” means that the fourth-order scheme is used without metric.k(2)= k(4)= 0.
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FIG. 3. Top, comparison between analytical solution and results from simulations using Weno, second-, and
fourth-order schemes for the Sod test case att = 0.2Lx/Uref. Bottom, cumulative errors for simulations of the Sod
test case.

• Sod test case.The description of this very common test case can be found in
[30]. The top of Fig. 3 gives a comparison between the analytical solution and results
(at t = 0.2Lx/Uref) from simulations using Weno (fifth order), SOJS, and COSSYL-FD4
using bothdo2

o2 (Eq. (34)) anddo2
o4 (Eq. (35)) artificial dampings. Here, we tune the artificial

viscosity withk(2)= 0.5 andk(4)= 0.03 for both second- and fourth-order schemes. The
better results are of course obtained with the Weno scheme. The results given by the C4W5-
hybridization and using Weno only are the same for the chosen sensor8, but strongly
depend on this choice (results not shown here). When comparing SOJS and COSSYL-FV4,
the use of the fourth-order scheme allows a better treatment of the expansion wave and
reduces the oscillations near the shock and the contact discontinuity. This fact is more pro-
nounced when using the adapted artificial dampingdo2

o4 rather than the originaldo2
o2, which

produces surprisingly good results. All these properties are recovered in Fig. 3 where we
plot ε(n).
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FIG. 4. Amplification rate of the Tollmien–Schlichting wave.

7.2. Two-dimensional unsteady test case: Tollmien–Schlichting waves.Concerning un-
steady flows, the use of high-order non-diffusive numerical schemes is particularly inter-
esting in the frame of instability development. Baylisset al. [31] compute the growth rate
of waves in spatially developing subsonic and supersonic boundary layers over a flat plate;
they compared second- and fourth-order Mac Cormack schemes.

We hereafter compute the growth rate of temporally developing Tollmien–Schlichting
waves for a weakly compressible boundary layer (free stream Mach number 0.5) for a
Reynolds number based on the displacement thicknessδi of Reδi = 1000. The initial condi-
tion consists of the 2D laminar compressible boundary layer together with an incompressible
white nosie of weak amplitude (10−4): the dimensions of the domain are (22, 20)δi . The
configuration is supposed to be periodic, which means that the flow leaving the domain is
reinjected at the inlet. The laminar growth of the layer thickness is treated through a classical
forcing described in [32]. Based on linear, compressible stability theory it is known that
the length 22δi corresponds to an unstable wavelength of Tollmien–Schlichting waves (see
Schlichting [33] for incompressible flow, and Mack [34] for compressible boundary layers).
The expected growth rate isωi ≈ 1.82U∞/δi for our case and has been reported in Fig. 4.
This figure shows the growth rate of TS waves for several resolutions. Here, the viscous
terms of the Navier–Stokes equations are evaluated through the standard second-order cen-
tered scheme already implemented in the NSMB solver. The COSSYL-FD4 scheme allows
us to follow the development of such waves even for resolutions where the SOJS is not able
to ensure the wave amplification. For all simulations,k(2)= k(4)= 0.

8. THREE-DIMENSIONAL TEST CASES

In a former study, it was shown that the use of the proposed fourth-order rather than
second-order schemes improves the results for LES computations of attached turbulent
boundary layers, at least as turbulent fluctuations are concerned [19], as it is usually reported
[1]. Two test cases are provided hereafter; the first concerns the development of Crow
instability and is close to DNS(k(2)= k(4)= 0); the second is close to aerodynamics and
includes RaNS modeling.
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8.1. Simulation of the long-wavelength Crow instability developing in vortex pairs.
This test case is performed using explicit time stepping in a pure Euler context. It aims at eval-
uating the gain obtained with the COSSYL-FV4 scheme with respect to the SOJS scheme in
a typical configuration dominated by convection phenomena. The long-wavelength three-
dimensional instability developing in originally two-dimensional rectilinear vortex pairs
has been discovered by Crow [35] and is of major concern in the field of wake vortex. The
dynamics of this instability has been further investigated theoretically by Widnallet al.
[36]. The physical mechanism is due to the velocity induced by one vortex on the other, and
also to the self-induced velocity of one vortex. The most amplified wavelength scales with
the vortex separation distance (denoted byb). This wavelength, as well as the associated
growth rate, depends on the ratioa/b, wherea stands for the vortex core radius. In the
present test case, we use a superposition of two rectilinear Lamb–Oseen vortices without
axial velocity, such as the initial ratio isa/b' 0.2. Periodic boundary conditions are used
in the three directions. The simulation domain is chosen to contain three wavelengths of
the Crow instability in its axial dimension(Lx = 18b). Obviously this axial size of domain
has some influence on the simulated most amplified wavelength if the size does not exactly
match the natural wavelength. The transverse dimensions are defined such as the vortex
replica induced by the periodic boundary conditions having a weak influence on the con-
sidered vortex pair. A good compromise is found to beL y= 5.5b andLz= 4.5b. Three grid
resolutions have been used (see Table II). The number of points in each dimension is de-
noted bynx, ny, andnz. Time is put to the non-dimensional form(t∗ = t (uref/ l ref)). We only
focus on the linear regime of the instability development. The simulation on the fine mesh
with the COSSYL-FV4 is considered as the reference simulation (Fig. 5). The evolution
of the mode corresponding to Crow instability is identified by performing axial discrete
Fourier transforms. Figure 6 shows the evolution of the kinetic energy contained in the
simulated mode corresponding to the instability mode. The reference solution shows that a
transient period before the kinetic energy corresponding to the Crow mode is exponentially
amplified. On the coarse mesh the SOJS provides a growth rate close to the reference up
to a non-dimensional timet∗ ' 60. This early departure from the reference curve indicates
that the intrinsic dispersion of the scheme acts strongly on the vortices. Indeed some vor-
tical patches are extracted from the initial vortices and the solution becomes non-physical.
On the same coarse mesh, the fourth-order scheme eventually diverges from the reference
curve later (t∗ ' 85). The medium mesh allows much more pertinent comparisons with
the reference solution. In this case both schemes show a good qualitative behaviour. The
growth rate simulated by the SOJS is overpredicted aftert∗ = 135 and exhibits an increase
in deviation, whereas the growth rate simulated by the COSSYL-FV4 corresponds to the
reference curve up tot∗ = 150, and the deviation observed remains approximately constant

TABLE II

Mesh Resolutions for Crow Instability Development

Mesh nx ny nz

Fine 115 92 40
Medium 80 60 30
Coarse 60 41 22

Note. nx, ny, nzdescribes the resolution inx, y, andz directions.
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FIG. 5. Structure of the Crow instability at timet∗ = 250Lref/Uref. Fine mesh and COSSYL-FV4.

FIG. 6. Evolution of the kinetic energy in Crow mode development as function of time for different schemes
and grid resolutions.
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FIG. 7. Computational set up for the detached laminar boundary layer.

up to late stages. In conclusion, this test case provides a concrete proof of the improvement
accomplished by the COSSYL-FV4 for the prediction of three-dimensional unsteady flows.

8.2. Steady RaNS computation.The pertinence of a high-order scheme for steady RaNS
computations is still an open question. However, we compute the solution of the RaNS equa-
tions, solved together with the Spalart–Allmaras (S–A) model [37] on the configuration
described in Fig. 7. This corresponds to the simulation of the transition to turbulence of a
laminar boundary layer submitted to an adverse pressure gradient caused by a suction on the
upper wall. The problem here is not to know if the solution is a good one, but to analyze how
the scheme is able to converge towards a grid independent solution. The grid is stretched
near the wall and the resolution is kept constant in the vertical direction for all simulations
(L y= 100δ1, δ1 being the inlet displacement thickness,ny= 100). The grid is discretized
using a regular step size in the streamwise direction (Lx = 350δ1, nx varies between 150
to 600). For all simulations, the transport equation of the S–A model is resolved using a
first-order scheme, whereas the time evolution of the other conservative variables is com-
puted using either the second- or the fourth-order scheme; the second-order artificial vis-
cosity is set to zero, whereas the fourth-order artificial viscosity is set to a standard value for
steady simulationsk(4)= 1/64. Figure 8 shows that a given mesh convergence is achieved
using the most refined mesh for both second- and fourth-order schemes. This result is

FIG. 8. Friction coefficient for steady RaNS simulation of separated boundary layer. Top, COSSYL-FV4
results, and bottom, SOJS results; for both figures, the result obtained on the (600× 100) grid is taken as reference.
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preserved for coarser resolution using the fourth-order scheme whereas the use of the
second-order scheme is not able to reach a converged solution for medium resolution
(nx= 200): the fourth-order scheme thus allows a large CPU cost reduction (approximately
50%, linked to the 2 time coarser grid), which is compared to the 20% CPU cost increase
of the fourth- versus second-order fluxes computation.

9. CONCLUSION

From a theoretical point of view, we have integrated the second-order Jameson scheme in a
larger family of schemes presenting skew-symmetric or “skew-symmetric-like” properties.
The derivation of these schemes is proposed in three steps:

• First, the fluxes corresponding to a given order are found for a regular grid arran-
gement as the solution of an over-determined system of linear equations following some
additional constraints (Section 3).
• Second, the extension for an irregular grid is proposed through the use of high-order

Lagrange polynomials (Section 5).
• Eventually, specific artificial dissipation or hybridization with an high-order upwind

flux is proposed (Section 4).

In conclusion, the FD (respectively FV) proposed fluxes lead to conservative, skew-
symmetric (respectively skew-symmetric-like), fourth-order schemes. From a practical
point of view, the previous schemes have been tested in an industrial code and have shown
to behave well for various test cases, including steady and unsteady simulations (Sections 7
and 8). The expected order is checked and a systematic improvement is obtained when
using the fourth-order instead of the second-order scheme. Additional tests (not reported
here) have clearly confirmed the stabilizing property of the skew-symmetric form.

10. APPENDIX: THEORETICAL DETERMINATION OF THE ORDER

This section proposes formal developments of truncation errors of the considered schemes
up to sixth order. All developments are performed using the formal solver Mathematica and
are available on demand.

10.1. Finite volume vs finite difference approximations.We recall that

• for the FD context, finding anth-order approximation of Eq. (1) consists of finding
an approximation of the derivativeH , such as

H = ∂U V

∂x
= ∂Ftrue

∂x
= ∂Fnum

∂x
+O(1n

x

); (40)

• for the FV context,Û i = (1/Vi )
∫
Vi

U (x, y, z) dVi , and finding a high-order approx-
imation of Eq. (1) then consists of finding anth-order approximation of the fluxes at the
interfacexi+1/2 such as

1

Vi

∫
Vi

H dVi = 1

Vi

∫
Vi

∂U V

∂x
dVi =

Ftrue
i+1/2− Ftrue

i−1/2

1x

= Fi+1/2+O
(
1n+1

xi+1/2

)− (Fi−1/2+O
(
1n+1

xi−1/2

))
1x

. (41)
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10.2. Finite difference approximation.
• Second-order scheme.The fluxes 20 and 21 define respectively

Fdiv,FD
o2i+1/2

− Fdiv,FD
o2i−1/2

1
=
[
∂uv

∂x

]
xi

+ (Odiv,FD
o2

)
xi
, (42)

Fskew,FD
o2i+1/2

− Fskew,FD
o2i−1/2

1
=
[
∂uv

∂x

]
xi

+ (Oskew,FD
o2

)
xi
. (43)

Standard Taylor expansions of the continuous variableU (x) andV(x) around pointxi leads
to

(
Odiv,FD

o2

)
xi
= 12

x

2
(u′v′′ + u′′v′)xi +

12
x

6

(
uv(3) + vu(3)

)
xi
+O(14

x

)
(44)

(
Oskew,FD

o2

)
xi
= 12

x

4
(u′v′′ + u′′v′)xi +

12
x

6

(
uv(3) + vu(3)

)
xi
+O(14

x

)
. (45)

The intuitive notationu′ = ∂u/∂x; u′′ = ∂2u/∂x2 is adopted. The corresponding schemes
are second order in space.
• Fourth-order scheme.For Eqs. (27) and (29), the Taylor expansion leads to

(
Odiv,FD

o4

)
xi
= 14

x

30

[
∂5uv

∂x5

]
xi

+O(16
x

)
(46)

(
Oskew,FD

o4

)
xi
= 12

x

6

[
u(3)v′′ + u′′v(3)

]
xi
+ 1

4
x

12

[
u(4)v′ + u(4)v′

]
xi

+ 1
4
x

30

[
uv(5) + uv(5)

]
xi
+O(16

x

)
. (47)

The corresponding schemes are fourth order in space.
• Sixth-order scheme.βk,p as defined by Eq. (22) can be found for higher-order

schemes. The following flux

Fdiv,FD
o6,i+1/2 =

1

60
(Ui+3Vi+3− 8Ui+2Vi+2+ 37Ui+1Vi+1

+ 37Ui Vi − 8Ui−1Vi−1+Ui−2Vi−2) (48)

used in Eq. (9) leads to

(
Odiv,FD

o6

)
xi
= 16

x

140

(
35v(3)u(4) + 35u(3)v(4) + 21v′′u(5) + 21u′′v(5) + 7v′u(6)

+ 7u′v(6) + vu(7) + uv(7)
)

xi
+O(18

x

)
. (49)

Concerning the skew-symmetric formulation, the flux

Fskew,FD
o6,i+1/2 =

1

120
(37Ui Vi + 45Ui+1Vi − 9Ui+2Vi +Ui+3Vi +Ui−2Vi−2+Ui+1Vi−2

− 8Ui−1Vi−1− 9Ui+1Vi−1+Ui+2Vi−1+ 45Ui Vi+1+Ui−2Vi+1− 9Ui−1Vi+1

+ 37Ui+1Vi+1− 9Ui Vi+2+Ui−1Vi+2− 8Ui+2Vi+2+Ui Vi+3+Ui+3Vi+3)
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leads to

(
Oskew,FD

o6

)
xi
= 16

x

120

(
15v(3)u(4) + 15u(3)v(4) + 9v′′u(5) + 9u′′v(5) + 3v′u(6) + 3u′v(6)

+ 6vu(7)

7
+ 6uv(7)

7

)
xi

+O(18
x

)
.

The corresponding scheme is sixth order in space.

10.3. Finite volume approximation.

• Second-order scheme.The fluxes

Fskew,FV
o2,i+1/2 = (Û i + Û i+1)(V̂ i + V̂ i+1)/4,

(50)
Fdiv,FV

o2,i+1/2 = (Û i V̂ i + Û i+1V̂ i+1)/2

provide the following approximation ofF at the interface

Fdiv,FV
o2,i+1/2 = Ftrue

i+1/2+12

(
u′v′

4
+ vu′′

6
+ uv′′

6

)
xi+1/2

+O(14
x

)
(51)

and

Fskew,FV
o2,i+1/2 = Ftrue

i+1/2+12

(
vu′′

6
+ uv′′

6

)
xi+1/2

+O(14
x

)
. (52)

The fluxes thus propose a second-order approximation of the real flux at the interface,
leading to a second-order scheme in a FV context.
• Fourth-order scheme.The previous high-order fluxes Eqs. (28) and (30) give

Fdiv,FV
o4,i+1/2 = Ftrue

i+1/2−14
x

(
7u′′v′′

36
+ v

′u(3)

8
+ u′v(3)

8
+ vu(4)

30
+ uv(4)

30

)
xi+1/2

+O(16
x

)
(53)

and

Fskew,FV
o4,i+1/2 = Ftrue

i+1/2−14
x

(
u′′v′′

9
+ v

′u(3)

24
+ u′v(3)

24
+ vu(4)

30
+ uv(4)

30

)
xi+1/2

+O(16
x

)
. (54)

They propose a fourth-order approximation of the real flux at the interface, leading to a
fourth-order scheme in a FV context.
• Link between FV and FD.With the previous explanations, the truncation error in

the FV context reads

FFV
on,i+1/2 = Ftrue

i+1/2−1nFi+1/2+O(1n+2) (55)

withFi+1/2 a function of [(∂ pu/∂xp)/(∂qv/∂xq)]xi+1/2 with p+q= n, which with Eq. (10)
leads to

Ftrue
i+1/2− Ftrue

i−1/2

1
= FFV

on,i+1/2− FFV
on,i−1/2

1
+1nFi+1/2− Fi−1/2

1
, (56)
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i.e.,

Ftrue
i+1/2− Ftrue

i−1/2

1
= FFV

on,i+1/2− FFV
on,i−1/2

1
+1n

(
∂F
∂x

)
i

. (57)
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